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Abstract：A new means to promote collaboration is for one researcher to work across multiple institutions. We 

show that, accompanying the fast growth of cross-affiliation in financial research, scale-free power laws 

characterize the resulting highly-skewed distributions of top finance journal publications of worldwide institutions. 

We propose an explanation of the empirical power laws, based on a network model featuring two identified 

mechanisms: nonlinear growth and linear preferential attachment. The model indicates that preferential 

allocation of 87% of all publications effectively engenders dispersion in the research output of the institutions, 

while accelerated growth in collaboration provides a counterforce that restores their homogeneity. 
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1. Introduction 

Rapid technological progress empowers people with easier ways of communication and 

enhanced efficiency in performing research tasks. Such facilitation has greatly accelerated 

collaboration among researchers, as evidently witnessed in all branches of science including 
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physics, mathematics, biology, neuroscience, computer science, and social sciences (see, e.g., 

Newman, 2001b,c,d, 2004; Barab ási et al., 2002; Wuchty, Jones, and Uzzi, 2007). In the 

discipline of economics, in particular, the questions asked increasingly call upon concerted 

efforts of researchers with specific expertises. Card and DellaVigna (2013) survey top 

economics journals during 1970-2012 and demonstrate that the number of authors per paper 

has nearly doubled, and the researchers have submitted twice as many papers per year, 

rendering the top journals under the constant bombardments of submissions. The world is 

becoming a smaller village thanks to enlarging coauthorships (Goyal, van der Leij, and Moraga-

Gonz ález, 2006). 

We observe a new form of cooperation in which researchers expand their scope of 

collaboration by affiliating simultaneously with multiple institutions. Top journal space is always 

limited.
6 

The ability to assemble brainpower and other valuable resources (such as funding, 

data access, hardware, and visibility) across institutions is often vital for successfully publishing 

in top journals. Here, we focus on the three widely-acknowledged top journals in financial 

economics, namely, the Journal of Finance (JF, founded in 1946), the Journal of Financial 

Economics (JFE, founded in 1974), and the Review of Financial Studies (RFS, founded in 

1986), which serve as ideal exemplifications. 

To visualize the pattern of collaboration in financial research, we present in Panel A of 

Figure 1 the average number of coauthorships from 1980 to 2016 by aggregating the three 

journals. Coauthorships display steady, approximately linear growth observed earlier in other 

fields, such as economics (Card and DellaVigna, 2013) and neuroscience (Baraba śi et al., 

2002). The new form of collaboration is shown in Panel B of Figure 1. This figure presents the 

average number of affiliated institutions reported per author by aggregating the three journals.
7 

The number lingered at a low level before 1995 but took off thereafter, that is, in a little more 

than two decades, the average number of institutions per author increased steadily from below 

1.1 to above 1.3. Put differently, on average, 1 out of 9 authors was affiliated with multiple 

institutions before 1995, and the ratio had escalated to 1 out of 3 by 2016. Panel C of Figure 1 

                                                        
6 The total number of papers published by the top economics journals actually decreased slightly 

accompanying the outburst of submissions. As a result, the acceptance ratios have fallen off dramatically. 

See Card and DellaVigna (2013). 
7 Prior to 1980, an author commonly reported a single affiliation except in rare cases. 
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reports the average number of institutions per author separately for each journal. The same 

trend is prevalent across all three. 

Top journal publications have a powerful influence on the impact of economic research. 

They also carry vast weight in the career paths of academic economists, the allocation of 

research funding, and the hiring decisions of research institutions. The new form of 

collaboration through cross-affiliation thus imparts fresh insights into the growth of research 

institutions gauged by their top journal publication records. In this study, we show that research 

institutions self-organize into a scale-free state and their top finance journal publications are 

characterized by power laws in the upper tail. The upper tail retains merely 6.0% of the totally 

828 institutions at the end of 2016, while these most prolific institutions produce 61.3% of the 

totally 13548 top journal publications till the end of 2016. The power laws govern institutions of 

diverse nature, scattered across geographic region and time of establishment. They are also 

robust over the last six years and when considered separately for each journal. 

Our results provide an important regularity for theories of research institution growth, which 

must target the empirical power laws documented here. We propose a model of network 

growth that explains the scale invariance, based on further examinations into the structural 

reasons for the emergence of the scale-free properties. Specifically, a research institution 

enters the research collaboration network as a node when it first publishes on a top finance 

journal and its degree henceforth equals its total number of publications. Two institutions are 

linked if they are affiliated to by one or more authors of a published article in a top journal. The 

deep collaboration in financial research is revealed by a giant component of the network, which 

consists of 99.5% of all the institutions at the end of 2016. The dynamics of the system are 

driven by nonlinear growth through enlarging coauthorships and cross-affiliation, as well as 

linear preferential attachment by incrementing total publications of institutions at a rate 

proportional to their current counts. The two mechanisms are generic, regardless of the types 

(universities, research centers, banks, etc.) and other characteristics (location, time of 

establishment, etc.) of the institutions. 

Our study, to the best of our knowledge, is the first to explore collaboration on the institution 

level, albeit the extensive literature of collaboration networks on the individual researcher level 

(see, e.g., Newman, 2001b,c,d, 2004; Goyal, van der Leij, and Moraga-Gonz ález, 2006). We 
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characterize the structure of knowledge, collaboration patterns, and growth mechanism of the 

collaboration network for financial research institutions. Our empirical investigation reveals the 

scale-free and nonlinear growth features of the collaboration network, and our model enables a 

quantitative understanding of the forces shaping the allocation of top journal publications. We 

shows that cumulative advantages constitute a dominant channel for the allocation of top 

finance journal publications. In particular, 87.0% of the total publications are distributed 

according to the Matthew effect,
8  

which results in the highly-skewed distributions of the 

institutions’ publication records. On the contrary, accelerated growth of collaboration works to 

restore the homogeneity of the institutions. 

The rest of the paper is organized as follows. Section 2 presents the definitions and 

empirical methods and results. Section 3 proposes an explanation of the empirical power laws, 

based on an accelerated network model. Section 4 concludes. 

2. Power laws for financial research institutions 

2.1 Definitions 

A power law, also referred to as a scaling law or a Pareto law, for a random variable 

x is a distribution described by the density function 

 , (1) 

where α is the power exponent and xmin is the lower bound to the power law behavior. To avoid 

divergence as x → 0, we require xmin > 0. The countercumulative distribution function is defined 

to be F (̄x) = Pr(X > x). We have 

 . (2) 

                                                        
8 Bol et al. (2018) document the Matthew effect in the allocation of science funding in the Innovation 

Research Incentives Scheme, a primary funding source for young Dutch scientists, in the Netherlands. 
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Power laws are an important empirical regularity for a wide spectrum of natural and social 

phenomena (Dorogovtsev and Mendes, 2003; Jackson, 2008). Beginning with Pareto (1896), 

well-documented power laws in economics and finance include individual wealth/income, 

international trade, city size, stock-market activity, firm size, CEO compensation, and supply of 

regulations (Gabaix, 2009). In academia, the number of papers written by individual scientists, 

the number of coauthors of mathematicians, and the number of citations of papers also obey 

power laws (Newman, 2003). In the following, we provide a first characterization of the 

distributions of top finance journal publications on the institution level. Power laws prove to 

adequately describe these distributions in the upper tail. 

2.2 Data 

We manually collect the author and affiliation information of all papers published in the top 

three finance journals by reading the title page of each paper. We exclude notes, 

comments/replies, and speeches/addresses. We focus on a sample since 1995, which 

embodies the fast growth of cross-affiliation in financial research as shown in Figure 1. Until 

2016, we register 4796 papers associated with 10910 author counts and 13548 affiliation 

counts. Both counts are with repetitions, that is, each mentioning of an author or institution 

contributes one count to its own category.
9 

The total affiliation counts are then sorted and 

ascribed to the 828 distinct institutions. We simply treat the counts as the institutions’ numbers 

of publications because they naturally pick up the effect of cross-affiliation and give full scope 

to collaboration.
10

 

                                                        
9 For a specific example, Edmans et al. (2012) supply the following acknowledgement of the af-b 

filiations of the authors on the title page of the JF article: “Edmans is from The Wharton School, 

University of Pennsylvania, NBER, and ECGI; Gabaix is from the NYU Stern School of Business, NBER, 

CEPR, and ECGI; Sadzik is from New York University; and Sannikov is from Princeton University.” In our 

sample, this paper consists of four authors affiliated with six distinct institutions. And we count one 

publication for University of Pennsylvania, two for NBER (National Bureau of Economic Research), one 

for CEPR (Center for Economic and Policy Research), two for ECGI (European Corporate Governance 

Institute), two for New York University, and one for Princeton University. 
10 Similarly, Newman (2004), in the context of coauthorship networks, provides the simplest method 

of counting the frequency of coauthorships between pairs of individual scientists as a measure of the 

strength of collaboration. 
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2.3 Empirical methods 

A power law model and the lower bound to the power law behavior can be determined 

adaptively. Given the cutoff for points in the upper tail, we get the measured data x1 ≥ x2 ≥ ... ≥ xN 

= xmin with N observations. We estimate α as the slope of the OLS log-log regression (Gabaix 

and Ibragimov, 2011): 

 ln(n − γ) = constant − αblnxn + noise, (3) 

where γ is an adjustment to the rank n. γ = 0 is typical in the literature while γ = 1/2 is optimal. 

The downward adjustment of 1/2 to the rank reduces the small-sample bias to the leading 

order for the log-log regression.
11  

The asymptotic standard error of αb is computed at 

αb·(N/2)−
1/2

, not the conventional OLS standard error that is nullified by the positive 

autocorrelation introduced by the ranking procedure into the residuals. 

The lower bound now hinges on a tradeoff: Too high xmin will leave out legitimate data points 

thus increase finite sample biases, while too low xmin introduces biases by mixing with non-

power-law data. We adopt the approach proposed by Clauset, Shalizi, and Newman (2009), 

which chooses xmin to minimize the distance between the empirical distribution of the data and 

the fitted power law. We measure the distance using the Kolmogorov-Smirnov statistic, DKS, 

which is most common for nonmormal data: 

 

                                                        
11 Barro and Jin (2011) impose the same downward adjustment prescribed by Gabaix and Ibragimov 

(2011) when estimating their power laws for the macroeconomic disasters. 
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 DKS = max |P(x) − F(x)|, (4) 
x≥xmin 

where P(x) and F(x) are the CDFs of the data and the fitted power law model, respectively. Our 

method avoids the subjectivity in applying some upper quantile or visual checks to fix xmin as 

often done in the literature (see, e.g., Beirlant et al., 2004 and Drees, De Haan, and Resnick, 

2000), while other more subtle methods require estimation of extra parameters (Embrechts, 

Kluppelberg, and Mikosch, 1997). 

A two-parameter distribution, such as the lognormal, may provide a better fit for the data 

due to the added curvature from the free parameter (Eeckhout, 2004). To test potential 

deviations from a power law, we employ the Gabaix-Ibragimov test (Gabaix and Ibragimov, 

2008) which augments the OLS regression with a quadratic term: 

  (5) 

where x̄ ≡ cov((lnxn)
−2

,lnxn)/var(lnxn)/2. x  ̄ recenters lnxn such that αb stays theb same, 

irrespective of the quadratic term. The standard error of the test statistic β is computed at 

αb
2 

· (2N) 
1/2

. We reject the null of an exact power law if and only if βb is statistically different 

from zero. 

2.3 Empirical findings 

We show in Panel A of Figure 2 the distribution of top finance journal publications 

accumulated to the end of 2016 for all institutions. We plot the rank of the institutions against 

their total publications in log-log coordinates. We impose the optimal downward adjustment of 

1/2 to the rank as suggested by Gabaix and Ibragimov (2011). The upper tail of the distribution 

falls onto a straight line that hints at a power law, or a rank-size rule, as dictated by (2). 
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Applying the method discussed in the previous subsection, we retain the 50 most prolific 

institutions in the upper tail, with the estimated cutoff of xmin = 71. We report the complete list of 

the 50 institutions together with their publication records in Table 1. Although the 50 institutions 

account for merely 6.0% of the entire sample of institutions that had published in top finance 

journals during our sample period, they contribute a predominant 61.3% of total publications. 

The distribution of the 50 institutions is highly right-skewed, with a mean number of publications 

of 166 and a median of 112; notably, NBER is solely responsible for 1105 publications. 

We classify the 50 institutions according to several criteria in Table 2. The 

comprehensiveness of our sample is revealed by the scattering of the institutions across type, 

geographic region, and time of establishment. For instance, the majority of the most productive 

institutions, as expected, are universities and colleges. Meanwhile, we find that three research 

bureaus/centers (NBER, CEPR (Centre for Economic Policy Research), and ECGI (European 

Corporate Governance Institute)), the Federal Reserve Board, and the Federal Reserve Bank 

of New York also make their way into the upper tail of the distribution. It is clear from the table 

that the present study broadly includes all institutions that embark on academic research in 

financial economics as “research institutions”. 

We present the distribution of the 50 most prolific institutions in Panel B of Figure 2. A 

power law model describes the data remarkably well (for over two decades of institutions and 

from 10
1 

to 10
3 

publications). We report the OLS regression results in Table 3. For the three 

journals combined, the regression R
2 
is as high as 98.6%. The power exponent is estimated at 

1.640 with a standard error of 0.328. As a robustness check, we repeat the analysis for the 

preceding five years, from 2011 to 2015. The results are presented in Table 4. The power 

exponent was fairly stable, even though the average number of publications increased 

dramatically over time. The complex system of institutions, with diverse natures and worldwide 

origins, seems to have reached a scale-free stationary state. 

To explore the unanimity of the power law behavior, we redo the graph of the upper tail 

distribution for each journal separately in Panel C of Figure 2. Since the three journals publish 

different total numbers of papers, we normalize each institution’s publications in one journal by 

the average number of publications in that journal. If the same power law permeates all three 

journals, we expect their graphs to collapse onto one another after normalization. This is 
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confirmed in Panel C of Figure 2. Moreover, Table 3 shows that, for each journal separately, the 

regression R
2 
is no less than 96.1%, and the power exponent ranges from 1.490 to 1.689 with 

no statistically significant differences among those estimates given the standard errors. 

We present in Table 5 the results of the Gabaix-Ibragimov test for deviations from our 

proposed power law models. For all the three journals, separately or combined, we see that βb 

is not significantly different from zero given the standard errors. We fail to significantly improve 

model performance by introducing curvature to the models. 

For a final robustness check, we apply the well-known tail-index estimator of Hill (1975) to 

our empirical data. The estimator is 

  , (6) 

with a standard error of αb
H 

·N
−1/2

.
12 

This estimator has been reported in, e.g., Dobkins and 

Ioannides (2000). We use the Kolmogorov-Smirnov test of the empirical CDF against the Hill’s 

estimate to detect potential deviations from power laws. We present the results for model 

estimation in Panel A and model tests in Panel B of Table 6. We confirm that, although some 

variations in the results are unavoidable when we apply different estimation methods, we find 

no qualitative differences in the results under either the OLS log-log regression or the Hill’s tail-

index estimator approach. Specifically, the discrepancies in the power exponent estimates are 

not statistically significant given the standard errors for the power law models considered. 

Furthermore, the Kolmogorov-Smirnov test cannot reject the power law models at a 

conventional significance level. 

In sum, the proposed power laws seem to succinctly capture the essence of the growth in 

financial research institutions. We now turn to examine the economic forces behind and 

dynamic evolutions of the academic finance research society, which may have effectively 

engendered the scaling laws documented above. 

                                                        
12 Under the null of a perfect power law, the Hill’s estimator exploits the efficiency properties of 

maximum likelihood estimation, and hence provides a smaller standard error than that of Gabaix and 
Ibragimov (2011). 
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3. A network-based explanation 

A variety of processes can explain the emergence of scaling (see, e.g., Barab ási and 

Albert, 1999; Gabaix, 1999; and Ferrer i Cancho and Sol é, 2003).
13 

We find empirical support 

for the network model of Barab ási and Albert (1999), who pioneer two generic mechanisms: 

One is growth, that is, new nodes continue entering the network; the other is preferential 

attachment, also referred to as success-breeds-success, rich-get-richer, popularity-is-attractive, 

or Matthew effect, that is, a node with a higher degree will enjoy a cumulative advantage and 

acquire even more links in the future. 

Specifically, we treat institutions with at least one top finance journal publication as nodes in 

our collaboration network. Therefore, an institution joins the network when it publishes for the 

first time in the top finance journals. And we treat the total number of publications of a node as 

the degree of the node. In concert with our data acquisition method, we increase the degree of 

a node by one per citation of the corresponding affiliation by an author in an article. We plot in 

Figure 3 the structure of the collaboration network at the end of 2016. Two nodes are 

connected if the corresponding two institutions work together in at least one publication during 

19952016. Notably, the network has a giant component that includes 99.5% of the nodes, 

which reveals the close linkage among the academic society for financial research. 

3.1 Dynamic patterns 

We first examine the growth of the collaboration network of financial research institutions. 

We plot in Panel A of Figure 4 the number of nodes newly joining the network. We see that the 

growth of the nodes is stable, with certain fluctuations around the financial crisis of 2008. Panel 

B of Figure 4 presents the fraction of publications contributed by the new nodes for each year 

from 1995 to 2016. This proportion again stays relatively stable, with an average of 6.0% from 

2000 to 2016. 

We then investigate the allocation of new links (publications) to the nodes. Exact power 

laws follow only from linear preferential attachment (Krapivsky, Redner, and Leyvraz, 2000). 

That is, the probability for an existing node to acquire new links (Π(k)) is proportional to its 

                                                        
13 For textbook treatments on the topic, see Dorogovtsev and Mendes (2003), Jackson (2008), 

Baraba śi (2016), and Newman (2018), among others. 
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degree (k), or Π(k) ∼ k. Exploiting the network maps at the end of each year from 1995 to 2016, 

we use the method provided in Jeong, N éda, and Barab ási (2003) to measure preferential 

attachment. We provide detailed results in Appendix A. We find that Π(k) can be well 

approximated by Π(k) ∼ k
θ
, where θ is estimated at 1.00 with a standard error of 0.08. Thus, 

linear preferential attachment achieves a good match for data. 

In the following, we develop a network model that captures three additional features of the 

collaboration network. First, expanding coauthorships (Panel A of Figure 1) and cross-affiliation 

(Panel B of Figure 1) generate nonlinear growth in total publications. Thus, instead of linear 

growth considered by Barab ási and Albert (1999), we incorporate accelerated growth following 

Dorogovtsev and Mendes (2001b, 2003). Second, we include internal links because 94.0% of 

the total publications come from collaboration among already existing nodes (Ghoshal, Chi, 

and Barab ási, 2013). Third, although preferential attachment enables institutions successful in 

historic records to produce even more research output in the future, we randomly allocate a 

fraction of new publications to the existing nodes, allowing research opportunities to strike 

institutions by sheer chance (Ghoshal, Chi, and Barab ási, 2013).
14

 

3.2 An evolving network with accelerated growth 

Consider discrete time t = 0,1,2,..., with time interval ∆t. Assume that there is one node in 

the network at time 0 and that one new node enters the network at each t ≥ 1. Then there are t 

nodes in the network at time t, excluding the new node entering at the time. Let m(t) denote the 

publication rate at time t. Hence m(t)∆t is the total number of new publications during the time 

interval [t,t + 1]. These publications are distributed among all nodes in the network at time t + 1. 

We assume that, a faction c0 of the total publications is distributed preferentially to the existing 

nodes, a fraction c1 is distributed randomly (with equal probability 1/t) to the existing nodes, and 

a fraction c2 is allocated to the new node. The constants c0, c1, and c2 are nonnegative and sum 

to one.
15 

Preferential and random allocations are independent events. 

Let Xs,t denote the degree at time t of a node entering at time s. Notice that 

                                                        
14 Mele (2017) develops a structural model of network formation, with both strategic and random 

networks features, which generates directed dense networks. He also provides a Bayesian MCMC 

method to estimate model parameters. 
15 For simplicity, we assume m(0)∆t goes to the only node at t = 0 in the network. 
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Pr(Xs,t+1 = k) = XPr(Xs,t+1 = k,Xs,t = j) 

j≥0 

= Pr(Xs,t+1 = k|Xs,t = k − (c0 + c1)m(t)∆t)Pr(Xs,t = k − (c0 + c1)m(t)∆t) 

 + Pr(Xs,t+1 = k|Xs,t = k − c1m(t)∆t)Pr(Xs,t = k − c1m(t)∆t) (7) 

+ Pr(Xs,t+1 = k|Xs,t = k − c0m(t)∆t)Pr(Xs,t = k − c0m(t)∆t) + Pr(Xs,t+1 = 

k|Xs,t = k)Pr(Xs,t = k). 

The four conditional probabilities in the above equation can be evaluated by linear preferential 

attachment, random allocation, and independence of the events. 

Let q(k,s,t) = Pr(Xs,t = k) denote the probability that the node has degree k at time t, t ≥ s. A 

new node entering at time s obtains the degree c2m(s − 1)∆t. Thus, q(c2m(s−1)∆t,s,s) = 1. We 

have the following master equation for degree probabilities of individual nodes. 

  (8) 

where  is the cumulative degrees of all nodes at t. It is worth mentioning 

that k ≤ A(t), that is, the degree of a node at time t is not greater than the cumulative input of 

degrees until time t. Re-arrange the terms of (8), we have: 
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To exploit the tractability of the rate-equation approach (Dorogovtsev, Mendes, and 

Samukhin, 2000; Krapivsky and Redner, 2002), we let ∆t go to zero as time t and degree k vary 

continuously. Suppose the degree rate function m(t) is continuous. The continuous-time 

approximation of the master equation (8) is obtained as follows. For t > s ≥ 0, 

 , (9) 

where p(k,s,t) is a generalized probability density function representing the density of the 

degree distribution at time t of the node s. The initial condition is p(k,s,s) = δ(k − c2m(s)) for s > 

0, where δ(·) is the delta function with the properties δ(0) = ∞, δ(x) = 0 for x 6= 0, and

 = 1 for a non-negative constant k0. 

Multiplying by k and integrating from 0 to ∞ with respect to k for the above equation, we 

obtain: 

 . (10) 

Denote the average degree . Then we obtain the evolution 

equation for k (̄s,t): 

 , (11) 

with boundary condition  

The integration  is the total number of nodes with degree k at time t, and t is 

the number of nodes at time t, excluding the newly coming one. Hence the degree distribution 

at time t is given by . Actually, the distribution P(k,t) can be 

recovered from k (̄s,t) by the relation 

 , (12) 
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where s = sˆ(k,t) is a solution to the equation k = k (̄s,t). The first equality is due to the fact that 

the solution p(k,s,t) is actually a delta function p(k,s,t) = δ(k − ks) for some ks and the second 

equality is according to the general property of the delta function. 

We now turn to solve the equation (11). A general solution for k (̄s,t) is 

 

By the boundary condition k (̄s,s) = c2m(s), C(s) can be identified and we obtain 

  (14) 

Recall that k (̄s,t) is the average degree at time t of the nodes entering at time s. The above 

equation indicates that a lower s corresponds to a higher k (̄s,t) for a fixed t. 

Let s = sˆ(k,t) be a solution to the equation k (̄s,t) = k. Then k (̄sˆ(k,t),t) = k. Taking partial 

derivative with respect to k, it follows that 

 . (15) 

Hence 

, 

where ˆs = sˆ(k,t) satisfies 

  (16) 

Next we introduce an assumption on the rate function m(t) in order to evaluate ∂k (̄s,t)/∂s. 

Suppose that m(t) is a non-negative continuous function defined on [0,∞). 

Assumption: There exist constants γ ≥ 0, b ≥ a > 0, such that as
γ 
≤ m(s) ≤ bs

γ 
for all s > 0. 

For example, m(s) = m or m(s) = ms
γ 
for some positive constant m, satisfies the assumption. 

Clearly, when the assumption is satisfied, m(s) is such a function that 

, and liminf  all exist. We write 
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h(s) = O(s
γ
) if a continuous function h(s) satisfies the assumption. We can directly show that

 

Using the above assumption, we can estimate the right hand side of (14). We find that 

 k = f(t)O(sˆ)
γ−c0(1+γ) 

+ g(t), (17) 

where 

. 

Thus, ˆ  and 

 . (18) 

The second equality in the above equation holds when k is large and has the same or a higher 

order than O(t)
γ 

of g(t). Note that the total degree  has an order of O(t)
1+γ 

thus the 

average degree  has an order of O(t)
γ
. Finally, it follows from (15) and (12) that the 

degree distribution at time t is 

 , (19) 

or 

 , (20) 

when k is large. Therefore, the degree distribution obeys a power law in the upper tail with 

exponent 

 . (21) 
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To ensure the existence of k ,̄ we require 1 + . 

Remark 1 (Additional Attractiveness): Dorogovtsev and Mendes (2001b) first study scaling 

property of networks with accelerated growth, based on the model of Albert and Barabasi 

(1999). To obtain a power exponent (α) greater than 1, they introduce a timedependent 

“additional attractiveness” to the nodes, which may not be easily verified empirically (Jeong, 

N éda, and Barab ási, 2003). Our model achieves the scaling property 

of networks with nonlinear growth without this extra assumption. 

Remark 2 (Experience versus Talent): Kong, Sarshar, and Roychowdhury (2008) consider 

the degree of a node as a proxy of its experience, and provide a method to identify the talent 

(inherent fitness) of a node. For instance, the talent of an institution in our study may be the 

endowment, scale, location, pedigrees of the employees, etc., of the institution. All these 

factors may potentially determine the institution’s future research performance. Under the 

combined effects of experience and talent, new degrees are then allocated preferentially 

according to the product of experience and talent.
16 

Kong, Sarshar, and Roychowdhury (2008) 

find that the talents of webpages are exponentially distributed, which explain the power law 

degree distributions of webpages and the quick rising of interesting new pages in the page 

ranking. However, the same method does not generate significant differences in the talents of 

the research institutions in our study.
12 

We thus do not pursue extensions of our model along 

this dimension. 

3.3 Model implications 

From (21), the exponent α decreases in c0. The larger proportion of degree allocation 

according to preferential attachment heightens the success-breeds-success effect and 

enhances the dispersion of the degree distribution. Suppose that c0 is strictly less than 1. Then 

α increases in γ. Heterogeneity of the system diminishes as the network undergoes higher 

order growth. Intuitively, fast growth of the network brings more and more publications for 

random allocation and allocation to new nodes, the two channels that counterbalance the effect 

of preferential attachment and restore homogeneity of the system. Moreover, preferential 

attachment works by cumulative advantages that are tempered by more and more publications 

                                                        
16 Note that the effect of “additional attractiveness” diminishes as the degree of a node becomes 
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to be allocated in the futures. For example, after a period of fast growth of the network, a newly 

joining node may have a degree higher than that of an existing node that has successfully 

received several preferential allocations. At the limit of γ → c0/(1 − c0), the power law collapses 

and heterogeneity of the nodes disappears. c1 and c2 do not directly enter (21), but they 

indirectly affect α through c0 as c0+c1+c2 = 1. For c0 → 1
−
, we get α → 1

+
, a special case called 

Zipf’s law, which is interesting because all its moments diverge. γ does not play a role in this 

case. We obtain the Barab ási and Albert model in the special case of c0 = c2 = 0.5 and 

γ = 0. 

For our collaboration network, the total counts of new publications equal the product of the 

number of papers, the average number of authors per paper, and the average number of 

affiliations per author. Coauthorships and cross-affiliation exhibit approximately linear growth, 

suggesting the quadratic growth of m(t) with γ = 2, given that the total number of papers 

published annually remains stable in the long run. Our empirical study finds that αb = 1.64 for 

the three journals altogether. We can use (21) to obtain c0 = 87.0%. That is, 87.0% of 

publications may have resulted from success-breeds-success, a dominating channel for the 

distribution of the top journal publications. We have deduced from the data that 6.0% of 

publications go to new nodes. Random allocation thus takes the remaining 7.0% of publications. 

When we lack either the growth of coauthorships or the growth of cross-affiliation, γ is brought 

down to 1, which  

 

larger, while the effect of talent does not. 
12

The results are available upon request. 

implies c0 = 80.5% under slowed acceleration; additionally, when we lack both forms of 

collaboration, we have γ = 0 and c0 = 61.0% under linear growth. This comparison emphasizes 

the importance of identifying the collaboration patterns before further inference on the evolving 

network. 

A most commonly invoked measure of dispersion/inequality in studies of income or wealth 

distributions is the Gini coefficient (G). G = 0 represents perfect equality while G = 1 stands for 
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the other extreme of maximal inequality. Dispersion increases with G monotonically in between. 

G = 0.5 is commonly regarded as the warning level for great disparity. We here borrow this 

measure and provide further discussions on the heterogeneity of the institutions. For power law 

distributions, it is well-known that G = 1/(2α − 1) (Aaberge, 2005). For the three journals 

altogether, we have G = 0.44 for αb = 1.64. Given c0 = 87.0%, c1 = 7.0%, and c2 = 6.0%, when 

either the growth of coauthorships or the growth of cross-affiliation is absent, α reduces to 1.35 

implying G = 0.59. And again, given the shares, when both forms of collaboration are absent, α 

reduces to 1.15 implying G = 0.77. Thus, higher order growth in collaboration effectively 

diminishes heterogeneity in the institutions’ research output. 

4. Conclusion 

Institutions are fundamental units for conducting research activities. Cross-affiliation, 

nonlinear growth from mixed forms of collaboration, and power laws for institutions’ research 

output may characterize other fields and extend to a broader set of journals as well. Cross-field 

examinations of the scaling behavior and the role played by preferential attachment in the 

allocation of publications could undoubtedly enrich our understanding of production of scientific 

knowledge on the institution level. We can also examine the inverse relationship between order 

of growth in collaboration and heterogeneity of research institutions through cross-disciplinary 

studies. This work awaits comprehensive data to be gathered for collaboration networks of 

different disciplines. 

Appendix A. Measuring preferential attachment 

At every time step t, a node i already present in the network acquires new links at the rate 

Π(ki) where ki is the degree of the node. Under preferential attachment, Π(ki) is a monotonically 

increasing function of ki. Several authors propose that Π follows a power law (Krapivsky, 

Redner, and Leyvraz, 2000; Newman, 2001a; Jeong, N éda, and Barab ási, 2003): 



18 

 , (A.1) 

where θ > 0 is a scaling constant; Ct is a normalization pertinent to time t. The scalefree model 

of Barab ási and Albert (1999) corresponds to linear preferential attachment with θ = 1, while 

for θ < 1 (sub-linear), the degree distribution follows a stretched exponential and for θ > 1 

(super-linear), a single node connects to nearly all other nodes (Krapivsky, Redner, and 

Leyvraz, 2000). We use the method provided in Jeong, N éda, and Barab ási (2003) to 

examine whether Π could be well approximated by a power law, and if so, to estimate the 

exponent θ. 

The dynamics of the research institution network provide the time when each node joins the 

system and the degrees of the nodes from 1995 to 2016. If the evolving network develops a 

stationary state, we can use nodes already present at time T and the degrees of these nodes at 

both T and T +∆T to measure Π. To ensure stationarity, we need T away from T0 when the 

network starts. We also choose a small ∆T such that the effect of t is at minimum and Π relies 

exclusively on k. To further reduce noise, we examine the cumulative function 

k 

 π(k) = Xi Π(ki). (A.2) 

k =1 

For Π(k) ∼ k
θ
, we expect π(k) ∼ k

θ+1
. 

In our empirical implementation, we choose T0 = 1995, T =2000-15, and ∆T = 1. The π(k) 

functions are shown in Panel A of Figure A.1. We plot two additional benchmark cases for 

comparison: π(k) ∼ k without preferential attachment and π(k) ∼ k
2 

for linear preferential 

attachment. The π(k) functions of the network follow a straight line in log-log coordinates. 

Therefore, the power law form in (4) provides a good approximation. The π(k) functions also 

increase with a speed consistent with linear preferential attachment, independently of the year 

when the measurements are taken. This result supports stationarity in the degree allocation 

process, even though some variation is inevitable due to statistical noise. We show the 

estimated θ exponent in Panel B of Figure A.1. The exponent from 2000-15 has a mean of 2.00 

and a standard deviation of 0.08. Linear preferential attachment hence constitutes the key 

degree allocation mechanism of the growing network. 
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Figure 1. Coauthorships and cross-affiliations. We graph the average number of authors 

reported per paper (N āut) and the average number of institutions reported per author (N īns) at 

top finance journals (JF, JFE, and RFS). Each year, we calculate N āut and N īns using total 

paper, author, and affiliation counts in that year. (A) N āut from aggregating the top three 

journals. (B) N īns from aggregating the top three journals. (C) N īns separately for each journal. 

The first issue of RFS appeared in 1988. The solid lines represent linear fit and vertical lines 

mark the year 1995. 
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Figure 2. The distribution function of institutions’ top finance journal publications. (A) 

Total publications in the top three journals (JF, JFE, and RFS) for all 828 institutions. (B) Total 

publications in the top three journals for the 50 most prolific institutions. (C) Total publications in 

each of the JF, JFE, and RFS for the 50 most prolific institutions. 
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Figure 3. Collaboration network of financial research institutions. We link two institutions if 

they are simultaneously acknowledged, either by one author or different authors, in one 

publication from 1995 to 2016. 
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Figure 4. Growth of the collaboration network. (A) The number of newlyjoining nodes and 

(B) the proportion of publications by new nodes, for each studied year from 1995 to 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1. Top Finance Journal Publications by Institutions. This table reports the journal 

publications of the top 50 institutions from 1995 to 2016. The rank is based on aggregate 

publications across the three journals. 

Rank Institutions JF JFE RFS All Journals % of Total 

1 NBER 437 347 321 1105 13.30% 

2 CEPR 201 142 162 505 6.08% 

3 New York University 137 137 119 393 4.73% 

4 Harvard University 129 182 71 382 4.60% 

5 University of Pennsylvania 125 135 90 350 4.21% 
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6 University of Chicago 152 97 80 329 3.96% 

7 Columbia University 85 77 73 235 2.83% 

8 UCLA 70 81 56 207 2.49% 

9 Duke University 73 70 58 201 2.42% 

10 Stanford University 65 66 56 187 2.25% 

11 MIT 72 70 43 185 2.23% 

12 University of Michigan 52 59 71 182 2.19% 

13 Ohio State University 47 74 60 181 2.18% 

14 London Business School 54 51 68 173 2.08% 

15 UNC Chapel Hill 49 55 61 165 1.99% 

16 University of Texas at Austin 71 46 45 162 1.95% 

17 Northwestern University 69 41 49 159 1.91% 

18 UC Berkeley 52 49 53 154 1.85% 

19 Cornell University 63 39 48 150 1.81% 

20 University of Maryland 40 50 49 139 1.67% 

21 University of Southern California 38 66 33 137 1.65% 

22 UIUC 46 48 37 131 1.58% 

23 ECGI 37 27 56 120 1.44% 

24 Boston College 34 52 31 117 1.41% 

25 Yale University 45 25 43 113 1.36% 

26 University of Washington 25 61 24 110 1.32% 

27 Washington University in Saint Louis 37 27 42 106 1.28% 

28 Indiana University 33 37 32 102 1.23% 

29 University of Rochester 28 55 15 98 1.18% 

30 HKUST 31 37 25 93 1.12% 

31 Federal Reserve Board 39 35 17 91 1.10% 

32 Swiss Finance Institute 22 41 28 91 1.10% 

33 University of Utah 26 40 25 91 1.10% 

34 Arizona State University 28 45 17 90 1.08% 

Table 1. - continued 

Rank Institutions JF JFE RFS All Journals % of Total 

35 INSEAD 18 33 37 88 1.06% 

36 LSE 26 14 48 88 1.06% 

37 Princeton University 38 33 16 87 1.05% 

38 University of Notre Dame 35 37 15 87 1.05% 

39 Purdue University 23 42 19 84 1.01% 

40 Tilburg University 31 33 18 82 0.99% 

41 University of British Columbia 27 20 34 81 0.98% 
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42 University of Oxford 36 22 23 81 0.98% 

43 Emory University 23 38 18 79 0.95% 

44 University of Toronto 31 25 23 79 0.95% 

45 University of Minnesota 27 26 24 77 0.93% 

46 University of Florida 20 39 14 73 0.88% 

47 Michigan State University 14 28 30 72 0.87% 

48 University of Virginia 24 24 24 72 0.87% 

49 Carnegie Mellon University 23 14 34 71 0.85% 

50 

Total 

Federal Reserve Bank of New 

York 

19 24 28 71 0.85%  

2927 2916 2463 8306 100% 
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Table 2. Summary of the 50 most prolific institutions. We categorize the institutions by 

type, geographic region, and time of establishment. 

Type 

Number in Total 

Universities/Colleges Research Bureaus/Centers Banks&Others 

45 3 2 

Region 

Number in Total 

North America Europe Asia 

42 7 1 

Establishment 

Number in Total 

Before 1995 2002 2006 

48 1 1 
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Table 3. Power law exponents for institutions’ top finance journal publications. 

Estimates are from OLS regressions with standard errors in parentheses. 

 All Journals JF JFE RFS 

α 

R2 

1.640 

(0.328) 

0.986 

1.490 

(0.298) 

0.988 

1.689 

(0.338) 

0.982 

1.615 

(0.323) 

0.961 
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Table 4. Power law exponents for institutions’ top finance journal publications over a 

5-year period. Note the stability in α regardless of increasing mean number of publications. 

 Mean Number   

Year of Publications α R2 

2015 

2014 

155 

146 

1.632 (0.326)b 

1.616 (0.323) 

0.985 

0.984 

2013 135 1.610 (0.322) 0.980 

2012 123 1.572 (0.314) 0.973 

2011 113 1.541 (0.308) 0.965 
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 Table 5. Tests of the power law models to empirical data. β is the Gabaix- Ibragimov 

statistic with standard errors in parentheses. 

 All Journals JF JFE RFS 
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Table 6. Power law models by Hill’s tail-index estimator. α
H 

is the Hill’s estimator with 

standard errors is in parentheses. KS-Stat is the Kolmogorov-Smirnovb test statistic with p-

values is in parentheses. 

 All Journals JF JFE RFS 

Panel A: Hill’s tail-index estimator 

αH 1.489 1.208 

(s.e.) (0.205) (0.166) 

1.516 

(0.208) 

1.313 

(0.180) 

Panel B: Kolmogorov-Smirnov test 

KS-Stat 0.065 0.131 0.123 0.124 

(p-val.) (0.968) (0.300) (0.373) (0.357) 
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 k Year 

Figure A.1. The π(k) function for the collaboration network (A) and the θ exponent (B). 

For each curve we used ∆t = 1 year. We measure θ for each year from 2000-15 by fitting the 

whole π(k) function. We plot the linear and quadratic π(k) functions as the solid and dashed 

lines in log-log coordinates, respectively. 


