长沙"塑普"单字调分析

沈斯友

(湖南大学文学院,湖南长沙,410100)

摘要:本文采用实验语音学的研究方法对长沙地区"塑料普通话"这一特殊语言现象中的单字调进行探究,通过 Praat 软件提取样本音频的基频并选用 T 值法对基频进行归一化处理,进而分析出长沙"塑料普通话"中的四个调类的调值,并将其与规范的普通话进行对比,得出长沙地区"塑料普通话"声调上的特点。

关键词:实验语言学:"塑普":"标普":单字调:调值

中图分类号: H017 文献标识码: A

一引言

最早,"塑料普通话"是对湘方言地区人民所说的不太标准的普通话的戏称,"塑料"一词在湘方言中经常理解为"假冒伪劣的、不经用的"。这种带有方言口音的"塑料普通话"在湘方言区普遍存在,生性幽默的湖南人民乐于自嘲,于是"塑普"便凝固成了湖湘地区一个独特的语言标签。随着普通话推广力度的加大,绝大多数人的普通话水平有了明显的提高,特别是新湘语地区的人们,他们的普通话除了在声调方面、少数在前后鼻音以及鼻边音、儿化音等细节上还存在问题,其他都非常接近标准的普通话。这时说着普通话的湖南人民已经自认为自己所说的是标准的普通话,而非"塑普",可是当与其他地区的人们特别是北方官话区的人交谈的时候就"相形见绌"了。可以发现,现在的"塑普"定义与之前广义"塑普"不同,它更多只指声、韵与普通话相差无几,但调值上有着明显差异的湘方言区的普通话。这里,我们只探究新湘语地区的"塑普"情况。

狭义"塑普"与标准普通话最大的差别就在声调上,通过对"塑普"单字调进行分析,我们可以得到"塑普"大致的声调特征,并将其与普通话相对比,这可以为我们纠正"塑普"口音提供参考。目前,对于"塑普"的认识大多还停留在认为它是一种不规范的普通话,但其实许多青少年已经可以在不同场合灵活运用"标普"与"塑普","塑普"已经逐渐成为了湖南人一种交际的手段,带有语用色彩。

"塑普"是在"标普"的基础之上产生的,因此该研究中调类四种仍然分为: 阴平、阳平、上声、去声。这样更有助于二者之间的对比,不会使人混乱。

二 声调实验及数据处理

1. 发音人

沈斯友,女,在读硕士研究生一年级,23 岁,湖南省长沙人。在长沙县星沙长大,除在学校和其他正式场合以外,日常生活中均使用长沙话。上大学以前,一直认为自己所说的普通话很标准,在大学里多次被北方同学指出不标准,是"塑普"。在普通话水平测试中等级为二甲(分数89.9),现已可以灵活运用"标普"与"塑普"。

2. 实验材料与方法

我们从四个调类中分别选取 15 个例字, 共 60 个例字, 其分别为: 阴平: 东、灯、分、刀、乡、刚、边、安、丁、开、疤、天、偏、低、超; 阳平: 婆、蛇、台、石、财、穷、程、球、床、才、平、寒、图、爬、时; 上声: 懂、等、粉、岛、响、古、纸、女、马、鼓、短、把、口、赌、底; 去声: 大、坐、部、树、巨、代、害、帝、怕、冻、爱、唱、菜、帕、妒。发音人将例字练习熟练之后对这 60 个例字依次录音,最终得到 60 个"塑普"样本。音频采

样率为 44100Hz, 单声道,以 WAV 格式保存。为降低因发声条件和发声习惯而产生的差异,我们同时对这 60 个例字采取了同样的方式进行了录音,得到了 60 个"标普"样本。

我们运用 Praat 软件对样本音频进行处理,在声音上选取声调段,并在声调段上取 11 个点,记录这 11 个点的基频值(精确到整数),同时记录声调段的时长。对所有的样本进行相同操作,并将所有数据导入 Excel 表格。

3. 数据处理


为过滤掉个人特性,获得具有语言学意义的信息,也为了消减录音时发音风格差异,我们必须将数据进行归一化处理。这里我们采用的是求 T 值法。

3.1"塑普"的数据

表 1

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
阴平	239.400	234.000	231.067	230.867	231.133	231.733	233.000	234.267	235.933	239.400	244.400
阳平	199.867	187.800	184.533	183.067	182.133	183.467	185.933	189.800	197.067	204.867	210.867
上声	220.067	211.200	201.733	196.467	192.067	188.000	184.067	180.400	178.800	179.867	180.000
去声	304.000	300.467	302.200	304.933	309.200	315.067	322.600	329.733	335.733	342.267	349.067

上表是将"塑普"60个例字的基频按四个调类在11个点上的均值,每个调类的每个点上的基频值的方差均小于10。

根据"塑普"的基频均值表我们可以绘出对应的"塑普"基频均值图。(见图 1)

图 1

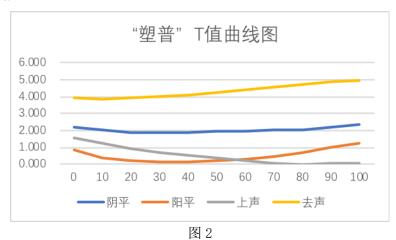
接下来我们先求出"塑普"基频值的对数值。基频的对数表如下:

表 2

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	110%
阴平	2.379	2.369	2.364	2.363	2.364	2.365	2.367	2.370	2.373	2.379	2.388
阳平	2.301	2.274	2.266	2.263	2.260	2.264	2.269	2.278	2.295	2.311	2.324
上声	2.343	2.325	2.305	2.293	2.283	2.274	2.265	2.256	2.252	2.255	2.255
去声	2.483	2.478	2.480	2.484	2.490	2.498	2.509	2.518	2.526	2.534	2.543

在"塑普"基频的对数值中,最大的是2.543,最小的为2.252。

T 值的公式为:


$$T_{X} = \frac{logX - logMin}{logMax - logMin} \times 5$$

我们将基频的对数值代入公式得到相应的 T 值 (精确到小数点后三位)表格:

表 3

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
阴平	2. 187	2.016	1.922	1.916	1.924	1.944	1.984	2. 025	2.078	2. 187	2. 341
阳平	0.838	0. 373	0. 242	0. 183	0.144	0.199	0. 299	0.452	0. 733	1.023	1. 239
上声	1.558	1. 250	0.908	0.710	0.541	0.381	0. 223	0.073	0.000	0.051	0.056
去声	3. 972	3. 884	3. 927	3. 994	4.098	4. 239	4. 415	4. 579	4. 713	4.857	5.000

根据归一化后的数据,我们可以看到它们的数值在0至5之间,可以直接画出"塑普"的五度值曲线图:



3.2"标普"的数据

表 4

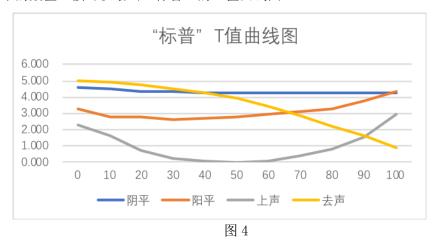
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
阴平	252.333	250.333	248.333	247.467	246.533	246.133	246.067	246.267	246.733	247.000	246.933
阳平	228.000	220.000	218.933	216.267	217.667	219.667	221.800	225.200	228.600	237.533	247.333
上声	211.533	200.933	187.133	179.733	177.200	176.400	177.600	182.067	188.467	199.667	222.200
去声	260.667	258.733	255.333	251.267	246.200	239.533	231.600	221.400	209.800	200.533	189.600

表 4 是"标普"的基频均值数据,与"塑普"的计算方式一致,其 SD 值均小于 10。根据表 4 可以绘出折线图,更能形象展示出基频的走向,如图 3。

依据"标普"基频数值求得其相应的对数值:

表 5

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
阴平	2. 402	2. 399	2. 395	2. 394	2. 392	2. 391	2. 391	2. 391	2. 392	2. 393	2. 393
阳平	2. 358	2. 342	2. 340	2. 335	2. 338	2. 342	2. 346	2. 353	2. 359	2. 376	2. 393
上声	2. 325	2. 303	2. 272	2. 255	2. 248	2. 246	2. 249	2. 260	2. 275	2. 300	2. 347
去声	2. 416	2. 413	2. 407	2. 400	2. 391	2. 379	2. 365	2. 345	2. 322	2. 302	2. 278


这其中最大的对数值为 2.416, 最小的对数值为 2.246。

根据 T 值公式进行归一化后, 我们得到表 6:

表 6

	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
阴平	4. 584	4. 482	4. 379	4. 335	4. 286	4. 265	4. 262	4. 272	4. 297	4. 310	4. 307
阳平	3. 286	2. 828	2. 766	2. 609	2. 692	2.809	2. 933	3. 127	3. 319	3.810	4. 328
上声	2. 326	1.667	0.756	0. 240	0.058	0.000	0.087	0.405	0.847	1.586	2. 956
去声	5.000	4. 905	4. 735	4. 530	4. 269	3. 917	3. 486	2. 909	2. 220	1.642	0. 924

表 6 中的数值直接可以绘出"标普"的 T 值曲线图:

三 "塑普"的实验结果分析

从"塑普"基频均值图可以看到,"塑普"中阴平调基频曲线起始点为 239.4Hz,终点同时也是最高点为 244.4Hz,最高点与最低点之间的间隔约 14Hz,起伏比较小,可以很明显看出这是一个中平调,但在声调段的末尾有升调调尾,这是"塑普"声调的一个较为典型的特征。阳平调基频曲线起始于 199.9Hz,终于 210.9Hz,总体起伏不大,其趋势是先微微降后微微升的情况,属于低平调。上声调属于全降调,其基频曲线始点为 220Hz,终点为 180Hz。去声调基频曲线起点为 304Hz,终点为 349Hz,这个属于高升调,基频在起点附近稳定了以后逐渐上升。

通过对基频数据的归一化处理,我们得到了"塑普"的 T 值曲线图,这个图同时也反映了声调调值在五度竖标中的走势。所以,我们可以用五度值来描写"塑普"声调的相对音高: 阴平调的起点在 2 度刻标处,调尾在 2-3 度之间,同时它属于平调,但为了保留"塑普"调尾上扬的特点,我们将其记为 223;阳平调基本均处于 0-1 度之间,只有调尾达到了 2 度,虽然前半段有降调,但由于调值太低,又因为起伏太小,于是我们记为 112;上声调在"塑普"当中是一个全降调,起始点接近 2 度,将其记为 21;去声调起始点位于 4 度刻标处,

终止于5度,是一个先平后升的调,我们将其记为445。

可以看出,"塑普"的调值总体与普通话的调值要低,同一调类的调值,"塑普"与"标普"相去甚远。

四 "塑普"与"标普"

标准普通话的四个调类和调值分别是: 阴平 55、阳平 35、上声 214、去声 51。根据发音人的"标普"基频 T 值图可以发现,阴平调曲线整体处在 4-5 度区间内;阳平调曲线起始于 3 度,终点处于 4-5 度之间;上声调起点在 3 度最低处,随后立即在 2 度内持续,在接近中点处上升直至接近 4 度最低处;去声调起始于 5 度最高处,逐渐降至 1 度最高处停止。严格上看,这里我们可以发现发音人的调值整体稍低,所以阴平调、阳平调、上声调的调值与理想数值有微小差距,但这恰恰有助于我们更加科学、合理的对比"塑普"与"标普"在调值高低方面的差异。如果只拿发音人的"塑普"与官方标准普通话的数据作对比的话,那么就极容易认为长沙人在说"塑普"的时候调值要压低。发音人"标普"各声调的调型与标准汉语声调调型基本一致,综上可以判断发音人是能够说声调标准的普通话的。

对比"塑普"与"标普"并分析之间声调上形成差异的原因。首先,我们对比二者基频均值图,"标普"基频均值最高为 261Hz,最低为 176Hz,"塑普"基频均值最高为 349Hz,最低为 179Hz,值得注意的是"塑普"除去声基频均值位于 250Hz 以上其余调类都处在179Hz-250Hz 之间,而"标普"的基频均值均处于 176Hz-261Hz 之间,所以在基频均值方面,我们发现"塑普"的去声处在高频区,其余调类两者基频高度差距不大。

再看 T 值曲线图,"塑普" T 值曲线图所反映出的声调曲线与"标普"的差异十分明显。阴平调在普通话中是一个高平调,调值一般为 55,但在"塑普"当中发音为一个低平调,但保留着一个"塑普"独有的上扬音尾,调值为 223。阴平调值偏低是受方音的影响,因为长沙话中阴平的调值偏低,基本也在 2-3 度之间,因此在"塑普"中保留着这种特点。阴平调的差异并不大。"塑普"中的阳平调调型与"标普"类似,但调值也低了 1-2 度,普通话中阳平调值为 35,在"塑普"中为 112,这与长沙话中阳平调值一般为 113 有着密切的联系。普通话中上声是降升调,调值为 214,但在"塑普"中则变成了全降调,调值为 21。"塑普"读成半上不单只在非句末的位置,即使在句末也是读成 21,这是由于"塑普"发音时具有紧凑、短促的特点,与普通话字正腔圆、曲折婉转不同,所以"塑普"的上声后半部没有明显的声调,但有时会带有特色上扬音尾。"塑普"声调上与"标普"最大的差异就在于去声调,这也是非湖南人尤其北方人对"塑普"感知最明显的一个地方。普通话中去声是一个全降调,调值为 51,而在"塑普"当中调型完全改变成了一个升调,调值为 445。这是由于长沙话中有阴去这一调类,其调值大致也是 45,而长沙话中阳去的调值起始点基频太低,与普通话中的去声发声起始频率相去甚远,因此在相似原则的引导下,"塑普"中的去声向长沙话中的阴去无限靠近,成为了"塑普"一个典型标志。

总结

通过语音实验,我们对比"塑普"与"标普"的基频均值图和 T 值曲线图得到了"塑普"的调值以及声调特征。在对应普通话的调类上,"塑普"的阴平调调值为 223,阳平调调值为 112,上声调调值为 21,去声调调值为 445。与普通话相比,"塑普"的声调特征有一下几个方面:一是除去声外,其余调值皆比普通话要低 1 度-2 度;二每一个调类后都可以有一个上扬音尾;三是上声无论处在句中哪个位置皆读为半上;四去声为升调,且调值为 445。

如今,普通话推广得极其成功,越来越多的年轻一代逐渐淡忘了祖祖辈辈留下来的方言,甚至不去说了,以至于不会说了,这是很可怖的。我们研究的"塑普"是一种披着长沙话声调外衣的普通话,这种独特的"腔调"是长沙话对普通话的烙印。我们不要把"塑普"看成

是由方言到普通话的过渡性变异语言,而应当看到"塑普"是人们对于方言的留恋。

参考文献

- [1] 林懿. 上海市区方言单字调实验研究[J]. 艺术科技, 2017, 30(9):395-396.
- [2] 朱晓农.基频归一化——如何处理声调的随机差异?[J].语言科学,2004,3(2):3-19.

An Acoustical Analysis of CitationTones in Mandarin with Changsha dialect

Shen Siyou

(Hunan University, Changsha / Hunan,410100)

Abstract: In this paper, we uesd the experimental phonetics research method to explore the tone of the special linguistic phenomenon of " Mandarin with Changsha dialect ". The fundamental frequency of the sample audio is extracted by Praat software and normalized by T-tone pitch research method. Then, the tone values of the four tones in " Mandarin with Changsha dialect " are analyzed. By comparing it with standard Putonghua, we can find out the tone characteristics of "Mandarin with Changsha dialect "in Changsha area.

Keywords: experimental phonetics; Mandarin with Changsha dialect; Putonghua; Citation Tone; tone pitch