信任是否创造了利于创新的环境?

XIE Fei¹, ZHANG Bohui², ZHANG Wenrui^{3*}

(1. Alfred Lerner College of Business and Economics, the University of Delaware, Newark, DE 19716; 2. School of Banking and Finance, UNSW Business School, UNSW Australia, Sydney, NSW, Australia, 2052; 3. Department of Finance, CUHK Business School, the Chinese University of Hong Kong, Hong Kong)

Abstract:We investigate the impact of social trust on corporate innovation. In a large sample of industry-country-year observations based on both public and private firms from 42 countries over the 1991-2008 period, our analysis shows that a country's social trust is positively related to its innovation activities. Multiple identification strategies point to a causal interpretation of the relation. We further find support for three economic channels underlying the positive impact of trust on innovation, namely, the collaboration channel, the tolerance channel, and the funding channel. Finally, we show that innovation serves as an important mechanism through which trust promotes economic growth.

Keywords: Culture, Social trust, Innovation, Economic growth, Productivity gain

Chinese Library Classification Number: F273.1 Document code: A

^{*} Fei Xie is from the Alfred Lerner College of Business and Economics, the University of Delaware, Newark, DE 19716, U.S.; Bohui Zhang is from the School of Banking and Finance, UNSW Business School, UNSW Australia, Sydney, NSW, Australia, 2052; and Wenrui Zhang is from the Department of Finance, CUHK Business School, the Chinese University of Hong Kong, Hong Kong. Authors' contact information: Fei Xie: <u>xief@udel.edu</u>, (302) 831-3811; Bohui Zhang: <u>bohui.zhang@unsw.edu.au</u>, (61) 2-93855834; Wenrui Zhang: <u>wrzhang@cuhk.edu.hk</u>, (852) 39437443. We are grateful for the valuable comments from Simba Xin Chang, Richard A. Lord, Xuan Tian, Yan Xu, and the seminar participants at the Chinese University of Hong Kong, Fudan University, University of Delaware, University of New South Wales, University of Nottingham at Ningbo, Zhongnan University of Economics and Law, and the participants of the 2016 FMA European Conference, the 2016 China International Conference in Finance. We also thank Jian Huang for his excellent research assistance. Bohui Zhang acknowledges the research grants from the ARC discovery grant (DP 120104755) and ARC linkage grant (LP130101050) from the Australian Research Council and the CIFR research grants (E026 and E028) from the Centre for International Finance and Regulation.

"The network structure of the biotechnology industry in the United States and the regional-based industrial system in Silicon Valley, California are used to show how social capital affects innovation in science and technology...The central arguments regarding social capital and its relationship to innovation transcend national boundaries, and many of the policy recommendations are important for western European, some East Asian and several other industrial states."

– Jane E Fountain, 1998,

"Social capital: Its relationship to innovation in science and technology"

1. Introduction

Firms do not operate in a vacuum and their activities are influenced by a society's norms and networks – social capital. The real effects of social capital have been observed at both the country and firm levels.¹ In particular, the pioneering work by Knack and Keefer (1997) and La Porta et al. (1997) document a strong link between the level of trust in a country and its economic growth. However, the underlying mechanisms through which social capital affects growth are less well understood (Guiso, Sapienza, and Zingales, 2004). In this paper we propose one such mechanism, technological innovation, which has been shown as a major driver of economic growth (Chang et al., 2016; Kogan et al., 2016). Specifically, we focus on a key dimension of social capital, i.e., trust, and investigate its impact on corporate innovation.

Trust is defined as the subjective belief that an individual assigns to the event that a potential counterparty takes an action that is at least not harmful to that individual (Gambetta, 1988).² Our first hypothesis postulates that a higher level of trust in a society enhances innovation. Innovation is a contract intensive endeavor that requires inputs from multiple parties such as employee-inventors, firms, and investors (Aghion and Tirole, 1994). Its success depends on the effectiveness of contracts that govern the relationships among these parties. Incomplete contracting thus represents a potential major obstacle to the innovation process. This problem is further exacerbated by the high investment risk and information asymmetry associated with innovation, which make it more difficult to clearly delineate the ownership of intellectual assets, the division of control rights, and the allocation of returns. Under such conditions, trust can act as an informal contracting

¹ See, e.g., Knack and Keefer (1997), La Porta et al. (1997), and Zak and Knack (2001) for evidence on country-level social efficiency and economic performance, and Guiso, Sapienza, and Zingales (2015) and Lins, Servaes, and Tamayo (2017) for evidence on firm value and stock returns.

 $^{^{2}}$ As with other aspects of culture, trust is deeply rooted in individuals' ethnic, religious, familial, and social backgrounds and is a relatively persistent behavioral trait (Putnam, 1993; Fukuyama, 1995; Guiso, Sapienza, and Zingales, 2006, 2010). It has also been shown that trust acts as a substitute for formal institutions at the country level (Guiso, Sapienza, and Zingales, 2004; Carlin, Dorobantu, and Viswanathan, 2009; and Aghion et al., 2010).

mechanism and play an economically important role in mitigating the incomplete contracting problem (Williamson, 1993; Carlin, Dorobantu, and Viswanathan, 2009).

More specifically, there are three reasons why trust can facilitate innovation. First, one of the keys to innovation success is collaboration, where inventors within a firm or across firms contribute their efforts, resources, knowledge, and capabilities toward a common objective (see, e.g., Fountain, 1998; Dovey, 2009). However, when inventors are concerned about opportunistic behavior by collaborating partners, such as shirking and intellectual property expropriation, they may have less incentive to make relationship-specific investments. In high trust countries, we expect inventors to be more willing to contribute and share resources and expertise with each other, because they consider opportunistic behavior by their partners less likely. Greater contribution and freer exchange of intellectual inputs can increase the likelihood and efficiency of collaboration and lead to higher innovation output. We label this view *the collaboration channel*.

Second, both theory (Manso, 2011) and experimental evidence (Ederer and Manso, 2013) suggest that optimal incentive contracts that motivate innovation should exhibit substantial tolerance for early failure and reward long-term success. A high level of trust on the part of investors can provide firms with more insurance against early failure, because investors in hightrust environments are less likely to attribute bad outcomes to managerial opportunism and penalize managers for unsuccessful innovation efforts. Consistent with this notion, Hilary and Huang (2015) show that firms located in U.S. counties with higher social trust utilize lowerpowered executive compensation schemes and are less likely to fire their CEOs for poor performance. The same argument applies to the employer-employee relationship as well. According to a survey conducted among 16,000 employees in 17 countries by the advisory firm, LRN, high-trust companies are deemed 11 times more innovative than their peers by the respondents. LRN summarizes its survey results as "when innovation fails, it's because companies don't put enough faith in employees to let them take risks."³ Taken together, we posit that a high trust environment is more conductive to innovation because it engenders greater tolerance for short-term failure and encourages managers and employees to adopt a long-term view and take more risk. We term this view the tolerance channel.

Third, innovative firms typically have an expanded set of investment opportunities. As a result, they are likely to exhaust internal capital and rely heavily on external finance (Brown, Fazzari, and

³ Why trust motivates employees more than pay – Jennifer Reingold (Fortune, April 27, 2016).

Petersen, 2009; Brown, Martinsson, and Petersen, 2012). When financial markets cannot observe the full spectrum of managerial actions, managers tend to steer their investment choices toward safer and shorter-term ones to mitigate information asymmetry and funding difficulties. A higher level of trust reduces investors' concern about managerial moral hazard and increases the supply of capital (Guiso, Sapienza, and Zingales, 2008a; Bottazzi, Da Rin, and Hellmann, 2016; Giannetti and Wang, 2016; Levine, Lin, and Xie, 2017; Dudley et al., 2017). Thus, trust can promote corporate innovation by increasing firms' access to external capital and allowing them to pursue riskier and longer-term investments. We call this view *the funding channel*.

By contrast, our second hypothesis argues that a higher level of trust in a society may impede corporate innovation. A key ingredient for innovation is a healthy dose of skepticism among collaborating parties over the process of decision making. For example, Carl Sagan, an American astronomer, has a famous quote: "*It is the tension between creativity and skepticism that has produced the stunning and unexpected findings of science.*" Peer challenging and monitoring can lead to refined ideas, improved processes, and elevated efforts, thereby increasing the odds of successful and impactful innovation. However, when collaborating parties are too trusting of each other, they can develop affinity and underinvest in mutual monitoring and challenging. As a result, innovation efforts may fail to achieve the desired outcomes. Similarly, in the relationship between investors and firms or that between firms and employees, when principals are too trusting of agents, there may be insufficient monitoring by principals and less incentive for agents to expend the necessary time, energy, and resources on developing impactful innovations.⁴

To test our two competing hypotheses, we construct a large international sample of 9,944 country-industry-year observations based on both publicly traded and privately held firms across 42 countries over the 1991-2008 period. Following the prior literature (La Porta et al., 1997; Guiso, Sapienza, and Zingales, 2008a, b; Ahern, Daminelli, and Fracassi, 2015; Pevzner, Xie, and Xin, 2015), we measure social trust as the average response in each country and year to the following question in the World Values Surveys (WVS): "Generally speaking, would you say that most people can be trusted or that you need to be very careful in dealing with people?" To measure

⁴ Butler, Giuliano, and Guiso (2016) find a hump-shaped relation between trust and economic performance at the individual level. Their interpretation is that individuals who are too trusting of others tend to assume extremely high social risk and be cheated more often, ultimately performing less well than those with a belief close to the mean trustworthiness of the population.

innovation output, we collect global patent information from the Orbis patent database.⁵ This dataset allows us to observe both the number of patents a country generates and the number of citations these patents receive post-registration. Accordingly, we are able to explore the effect of social trust on both the quantity and quality of innovation output.

Our baseline results show that the level of trust in a country is positively related to its innovation output. This relation is both economically and statistically significant. For example, a one standard deviation increase in a country's social trust is associated with a 64% increase in the number of patents and a 56% increase in the number of patent citations, relative to their respective means. This is consistent with our first hypothesis that social trust *enhances* innovation. Our findings continue to hold in an extensive set of robustness checks using alternative model specifications and measures of trust and innovation output.

Endogeneity is an important consideration of our empirical tests because i) potential omitted variables can be correlated with both social trust and innovation, and ii) innovation may affect the evolution of trust. We employ a multipronged approach to address the endogeneity concerns. First, we augment our baseline regressions with a battery of additional control variables that can potentially relate to both trust and innovation. Second, we follow Algan and Cahuc (2010) and construct an inherited trust measure based on the trust beliefs of descendants of immigrants to the U.S. We then examine the effect of inherited trust on innovation. Third, we employ a two-stage least squares (2SLS) regression approach where we use the rate of intentional homicide in a country as an instrument for trust. Finally, to remove any confounding effects of cross-country differences in legal institutions and economic development, we conduct a single-country analysis based on publicly traded firms in the U.S., where we explore the differences in social trust across states. Our findings remain intact through all these tests.

In further analysis, we provide evidence on the three underlying economic channels through which social trust promotes innovation, namely, *the collaboration channel*, *the tolerance channel*, and *the funding channel*. First, we find that the effect of trust on innovation is more pronounced in countries with weaker contract enforceability and poorer intellectual property protection. This

⁵ Compared to the National Bureau of Economic Research (NBER) Patent and Citation database compiled based on information from the United States Patent and Trademark Office (USPTO), the Orbis database has a much broader coverage. In addition to the patents filed in the U.S. administrated by the USPTO, the Orbis database covers patents filed in 93 non-U.S. patent offices (including national patent offices and regional and international organizations, such as the European Patent Office (EPO) and the African Intellectual Property Organization). Therefore, we are able to more comprehensively measure a country's innovation level using the Orbis database.

evidence suggests that as an informal contracting mechanism, trust can assuage inventors' concern about intellectual property expropriation and ex-post holdup, thereby encouraging more collaboration and spurring more innovation. Second, social trust plays a more important role in enhancing innovation in countries with weaker employee protection and creditor-friendly bankruptcy regimes. This finding supports the tolerance channel that trust promotes corporate innovation by alleviating employees' and firms' concerns about potentially high costs of innovation failure. Third, we find that the impact of trust on innovation is more pronounced among countries where corporate information environments are more opaque due to poor financial disclosure and weak accounting standards. This is consistent with the funding channel that trust mitigates information asymmetry and reduces investors' concern about moral hazard, thereby increasing firms' access to external capital.

Finally, we close the loop by investigating whether social trust indeed affects economic growth through innovation. Given that an economy can achieve growth through either productivity improvement or capital accumulation, we examine the effect of trust on both the growth of industry value added (total economic growth) and the growth of industry total factor productivity (TFP), respectively, for each country and industry. Our results show that social trust is positively and significantly related to the growth of both industry value added and industry TFP. More importantly, this relation is concentrated in more innovative industries, suggesting that innovation is an important mechanism through which social trust promotes economic growth.

Our study lies at the intersection of two major strands of literature in economics and finance, one of which is on how economic decision making and performance relate to culture in general and trust in particular, and the other on factors driving innovation and economic growth. We contribute to both lines of research by presenting the first evidence that trust has an economically important effect on firms' innovation output. We obtain this result both in our primary, cross-country setting and in a single-country context for robustness. Furthermore, we contribute to a deeper understanding of the relation between trust and innovation by proposing and substantiating several specific channels through which trust can impact innovation.

Given the critical role of innovation as the engine for value creation and growth for individual firms and national economies, our findings shed light on a direct mechanism underlying the real beneficial effects of trust previously documented in the literature. In addition, while prior research

has identified a number of country-level determinants of innovation,⁶ our study highlights that a country's informal institutions, in particular social trust, affect innovation output as well. In fact, our results indicate that trust plays an especially prominent role when formal laws and regulations are lacking. This suggests that trust can help mitigate the incomplete contracting problem and facilitate contract-intensive economic activities such as innovation.

The rest of the paper is organized as follows. Section 2 describes sample construction and reports summary statistics. Section 3 presents our main empirical findings and a variety of robustness checks. Section 4 explores plausible underlying economic channels through which social trust affects innovation. Section 5 discusses the relation between trust, innovation, and economic growth. Section 6 concludes.

2. Data, variables, and sample

2.1. Data and sample

We construct our innovation output measures based on Bureau van Dijk's Orbis patent database, which records global patents filed to 94 regional, national, and international patent offices. The source of the database is the Worldwide Patent Statistical Database (PATSTAT) maintained by the European Patent Office (EPO). The Orbis patent database links 36 million ultimately granted patents to both public and private firms in the Orbis database from 1850 to 2012.

The Orbis patent database has a much wider coverage than the National Bureau of Economic Research (NBER) Patent and Citation database because the NBER database only records patent filings to the U.S. Patent and Trademark Office (USPTO). Previous international studies on innovation, e.g., Acharya and Subramanian (2009), Hsu, Tian, and Xu (2014), and Acharya, Baghai, and Subramanian (2014), mainly rely on the NBER database to construct innovation output measures. However, as acknowledged in these studies, doing so may lead to a sampling bias because firms in many countries, especially emerging economies, do not file patent applications to the USPTO and this bias varies across countries and over time (Chang et al., 2016). The Orbis database mitigates this bias because it covers patents filed by firms to both domestic and overseas patent offices.

⁶ These factors include, e.g., creditor rights (Acharya and Subramanian, 2009), shareholder protection (Brown, Martinsson, and Petersen, 2013), labor laws (Acharya, Baghai, and Subramanian, 2013), financial market development (Hsu, Tian, and Xu, 2014), financial market liberalization (Moshirian et al., 2015), and religious beliefs (Benabou, Ticchi, and Vindigni, 2015).

We measure social trust using data from the World Values Surveys (WVS). We extract industry-level data at the two-digit International Standard Industrial Classification (ISIC) from the United Nations Industrial Development Organization Industrial Statistics (UNIDO) database and country-level data from the World Development Indicator (WDI) database compiled by the World Bank.

Our initial sample consists of all industries in countries that are jointly covered by the Orbis, WVS, UNIDO, and WDI databases. We match patent data with industry-level data using the crosswalk from the International Patent Classification (IPC) to the ISIC provided by Lybbert and Zolas (2014).⁷ We further filter the sample according to the following criteria. First, due to the limited coverage of the UNIDO database, our sample only includes manufacturing industries with two-digit ISIC codes from 15-37.⁸ Second, similar to previous studies, e.g., Hirshleifer, Low, and Teoh (2012), we exclude countries that have no patent at all during the entire sample period. Third, in accordance with prior studies (e.g., Acharya and Subramanian, 2009, Hsu, Tian, and Xu, 2014, and Moshirian et al., 2015), we remove the U.S. from our sample but use the patent filings by U.S. firms as a control for the global trend in industry-level patenting activities and innovation potential.

Our final sample consists of 23 industries in 42 countries from 1991-2008.⁹ Due to missing values for some control variables, our main sample is an unbalanced panel with 9,944 industry-country-year observations.

2.2. Measuring innovation output

Following previous studies (e.g., Aghion, Van Reenen, and Zingales, 2013; Seru, 2014), we measure innovation output using two proxies. The first proxy is the number of successful patent

⁷ We are grateful to Travis J. Lybbert and Nikolas J. Zolas for sharing their data on the "Algorithmic Links with Probabilities (ALP) Industry Level-to-Patent/Technology Level Crosswalk". Specifically, the ALP concordance is constructed using probability weighting, meaning that the weights provided for each industry level-patent level matching is between 0 and 1. All weights by industry or technology class should also sum up to one. See Lybbert and Zolas (2014) for a detailed description.

⁸ Manufacturing industries are the most innovative industries according to the 2008 Business R&D and Innovation Survey by the National Science Foundation (available at <u>http://www.nsf.gov/statistics/infbrief/nsf11300</u>). Furthermore, patenting innovation is important to manufacturing industries because these industries heavily rely on patents as a means of appropriating new technologies (Cohen, 1995).

⁹ Our sample period begins in 1991 because the WVS data cover few countries prior to 1990 and we lag the trust measure by one year in the regression analysis. Our sample ends in 2008 because the UNIDO data are incomplete after 2008. As a robustness check, we include data prior to 1991 and find the results are largely the same. In addition, as noted by Hall, Jaffe, and Trajtenberg (2001), there is, on average, a two to three year lag between the patent application date and the patent grant date. However, because our sample period ends in 2008, this truncation issue has a minimal impact on our study.

applications by firms in each ISIC industry-country-year cohort (*Patent*).¹⁰ Although innovation output is not directly observable, patents offer a good indicator of the level of innovation output since patenting is one of the most important ways for firms to protect their intellectual property.¹¹ However, a firm may protect its inventions in multiple jurisdictions by filing applications for patent protection to patent offices in different countries, all of which are recorded by the Orbis patent database. We deal with this issue by counting one patent per innovation. For example, if a U.K. firm patents an innovation in the U.K., the U.S., and Japan, we would count this as one patent by the U.K. firm. Another issue is that a patent application on the same invention can be filed to different patent offices on different dates. To determine the actual year of innovation for these cases, we choose the earliest application date for an innovation.

Patent counts only reflect the quantity rather than the quality of innovation. As more significant patents are expected to be cited more frequently by other patents, forward citations of patents can better capture the technological or economic significance of innovation (Hall, Jaffe, Trajtenberg, 2005). Consequently, we use the number of citations received by patents of firms in each ISIC industry-country-year cohort as the second proxy for innovation output. Because patents in certain technology class and year tend to receive more citations (Hall, Jaffe, and Trajtenberg, 2005), we adjust raw citations using time-technology class fixed effects recommended by the prior literature, e.g., Atanassov (2013), Hirshleifer, Low, and Teoh (2012), and Chang et al. (2015). Specifically, citation counts adjusted for time-technology class fixed effects are defined as raw citation counts scaled by the average citations in the same year and in the same technology class (*Citation*).

Despite the wide acceptance and usage of the above innovation output measures (see, e.g., Acharya and Subramanian, 2009; Hsu, Tian, and Xu, 2014; Moshirian et al., 2015), they are subject to certain limitations. For example, not all inventions meet the patenting criteria and firms may keep some inventions secret for strategic purposes.

¹⁰ We use the patent application date rather than the grant date in the analysis because the application date is closer to the actual time of inventions compared to the grant date (Hall, Jaffe, and Trajtenberg, 2001).

¹¹ Another measure of firms' innovation activities is research and development (R&D) expenditure, which mainly captures the quantitative input to the innovation process (Aghion, Van Reenen, and Zingales, 2013). However, data availability is better for patents than for R&D expenditure, especially for non-U.S. firms (e.g., Koh and Reeb, 2015; Koh et al., 2016). Koh and Reeb (2015) find that many innovative U.S. firms strategically avoid reporting R&D expenditures in their financial statements. Considering the consistent reporting standards on R&D and the strong enforcement in the U.S., non-U.S. firms are even more likely to have such reporting discretion (Koh et al., 2016). Therefore, results relying on reported R&D expenditures as the dependent variable are confounded by the concern that firms strategically disclose R&D as permitted by a country's accounting standards.

2.3. Measuring social trust

Following the previous literature, e.g., La Porta et al. (1997) and Guiso, Sapienza, and Zingales (2008a, b), we define social trust (*Trust*) as the average response of a country's survey participants to the question "*Generally speaking, would you say that most people can be trusted or that you need to be very careful in dealing with people*?" in each survey year. In particular, we code the response to this question as one if a survey participant responds that most people can be trusted and zero otherwise, and then calculate the mean of the responses in each country year as our measure of social trust. Our results are robust to an alternative measure of trust based on survey responses to a different WVS question (see the Internet Appendix).

2.4. Control variables

We control for several industry and country characteristics that may potentially be correlated with social trust and innovation. The first variable we consider is a country's macroeconomic conditions since social trust is positively associated with economic development (La Porta et al., 1997; Knack and Keefer, 1997). In addition, wealthier countries may innovate more (Acharya and Subramanian, 2009; Acharya, Baghai, and Subramanian, 2013). We hence use the logarithm of GDP per capita (Ln(GDP)) as a proxy for a country's macroeconomic conditions.¹²

Second, free trade may encourage firms to patent their inventions and to protect domestic sales and secure foreign sales (Acharya and Subramanian, 2009; Hsu, Tian, and Xu, 2014; Chang et al., 2016). Moreover, Guiso, Sapienza, and Zingales (2009) show that bilateral trust between countries promotes international trade. We thus include the ratio of import plus export over GDP (*Trade*) to capture the trade openness of a country.

Third, we control for a country's financial development. Hsu, Tian, and Xu (2014) document financial development as an important determinant of a country's patenting activities. Guiso, Sapienza, and Zingales (2004, 2008b) find that social trust promotes financial development. We hence include in the regressions the financial development in a country, which is defined as the

¹² All variables in dollar figures are measured in real terms at the constant national prices in 2005 U.S. dollars.

ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP (*FinDev*).¹³

Fourth, we control for a country's formal institutions as the prior literature documents that formal institutions and informal institutions such as social trust interactively affect economic activities (Knack and Keefer, 1997; Williamson and Mathers, 2011). Following Williamson and Mathers (2011), we use the index of economic freedom compiled by the Fraser Institute as a proxy for formal institutions (*FormalInst*). The index of economic freedom has a comprehensive coverage of a country's formal institutions including the effectiveness of a country's legal system, the extent of corruption, the protection of private property rights, and the openness of labor, financial, and product markets.

Fifth, to account for heterogeneities in size and development across different industries in a country, we include the logarithm of value added in a two-digit ISIC industry in a country in each year (Ln(VA)) as an additional control.

Finally, as pointed out by Hall, Jaffe, and Trajtenberg (2001), the patenting propensity in different industries varies over time.¹⁴ We thus control for the time trend of industry-level patenting activities. Specifically, we follow Acharya and Subramanian (2009) and Moshirian et al. (2015) and include the median number of patents applied by U.S. firms in each ISIC industry-year cohort as a proxy for the industry-level patenting intensity or innovation potential (*Intensity*). We choose the U.S. as the benchmark to adjust for the global industry-time trend because the U.S. has arguably the most comprehensive patent data across different technology classes over time, the most developed financial market to fund the technological growth opportunities, and the most favorable research environment in the world. Therefore, patenting activities by U.S. firms in different industries can serve as reasonable indicators of each industry's innovation potential.

2.5. Measures of economic growth

To analyze the effect of social trust on economic growth, we use the annual growth of industry value added and the annual growth of industry total factor productivity (TFP) as our dependent variables. Following the previous literature, e.g., Fogel, Morck, and Yeung (2008) and Chang et

¹³ Our results do not change qualitatively if we include equity market development and credit market development separately instead of financial market development in the regressions.

¹⁴ See Hall, Jaffe, and Trajtenberg (2001) and Cohen, Nelson, and Walsh (2000) for a detailed discussion on this pattern.

al. (2016), we control for initial conditions of factor inputs, such as industry value added (VA), industry capital stock (K), and the total number of employees in each industry (Emp), in the regressions.

According to the standard Cobb-Douglas production function, the annual growth of industry value added is defined as the annual change of the logarithm of industry value added ($\Delta Ln(VA)$), while the annual growth of industry TFP is defined as the annual change of the logarithm of industry TFP ($\Delta Ln(TFP)$). Because industry TFP data are not available in the UNIDO database, we need to construct Ln(TFP) using the production function in Eq. (1) (country, industry and time subscripts are omitted for brevity):

$$Ln(VA) = Ln(TFP) + \alpha Ln(K) + (1 - \alpha) Ln(Emp)$$
(1),

where α and 1- α are capital and labor shares in the output. Assuming standard values of 0.3 and 0.7 for capital share (α) and labor shares (1- α) in the production function (Caselli, 2005), we compute the annual industry TFP growth according to Eq. (2) below:

$$\Delta Ln(TFP) = \Delta Ln(VA) - 0.3 \Delta Ln(K) - 0.7 \Delta Ln(Emp)$$
(2).

However, data on *K* in Eq. (1) and (2) are not available from the UNIDO database either, though data on *VA* and *Emp* can be directly obtained. We thus follow Caselli (2005) and construct a series of capital stocks for each industry in each country using the perpetual inventory method by assuming that the economy under consideration is in its steady state. Specifically, according to Harberger (1978), the initial capital stock K_0 is defined in Eq. (3) as follows:

$$K_0 = \frac{I_0}{g+\delta} \tag{3},$$

where I_0 represents the gross fixed capital formation for a given industry for the first year when data are available, *g* corresponds to the average annual growth rate of industry value added in that industry for the period 1963-2008,¹⁵ and δ represents the depreciation rate of physical capital that is set equal to 6%. After determining the initial capital stock K_0 , we then compute capital stocks for subsequent years according to Eq. (4) below:

$$K_t = (1 - \delta) \times K_{t-1} + I_{t-1} \tag{4}$$

Using the above approach, we are able to compute the industry value added growth, industry TFP growth as well as initial conditions of factor inputs, i.e., the logarithm of industry value added

¹⁵ In the UNIDO database, the first year when data on industry value added are available is 1963. Previous studies, e.g., Nehru and Dhareshwar (19993) and Caselli (2005), recommend calculating the average growth from the first year.

(Ln(VA)), the logarithm of industry capital stock (Ln(K)), and the logarithm of industry labor force (Ln(Emp)).

2.6. Sample distribution

Panel A of Table 1 reports the sample distribution of the aggregate patent and citation counts and the average social trust score by country. Column (1) shows the number of observations for each country. Columns (2) and (3) report the aggregate innovation measures. Specifically, in column (2), Japan has 220,054 patents, the largest number among all countries, followed by Korea, Germany, and China, while Indonesia has only 5 patents, which is the lowest among all sample countries, followed by Jordan, Morocco, and Philippines. However, column (3) indicates that patents of Japanese and German firms receive much more citations than those of Korean and Chinese firms, which suggest a noticeably larger impact of innovation by Japanese and German firms. The observation that patents from developed countries are technologically more significant than those from emerging economies highlights the importance of using patent citations as a measure of innovation output.

Social trust also displays large cross-country variations as shown in column (4). In particular, Sweden and Norway have the highest scores of 0.656 and 0.653 followed by China and Finland, while Brazil and Philippines have the lowest scores of 0.048 and 0.071 followed by Malaysia and Turkey.¹⁶

[Insert Table 1 about here]

Panel B of Table 1 presents the sample distribution of average values of industry innovation output, industry value added (in millions of U.S. dollars), and industry innovation intensity across 23 industries. Columns (2) and (3) indicate that patent counts and citations vary significantly across industries. Specifically, industries of machinery and equipment (ISIC 29), office, accounting, and computing machinery (ISIC 30), and chemicals and chemical products (ISIC 24) have the highest number of patent counts (199, 188, and 180) and citation counts (418, 440, and 430). In contrast, recycling (ISIC 37), leather (ISIC 19), and tobacco (ISIC 16) industries have the lowest number of patent counts (1, 5, and 7) and patent citations (1, 8, and 10).

¹⁶ To safeguard against the possibility that a particular country's social trust measure is contaminated by large errors, we perform a robustness check to ensure that our results are not sensitive to excluding any one country from our analysis.

Moreover, as observed in column (4), industries that contribute the highest value added are the food and beverage industry (ISIC 15) and chemical industry (ISIC 24) with an average value of \$74.14 billion and \$74.08 billion, respectively, while industries that contribute the lowest value added are the recycling industry (ISIC 37) and leather industry (ISIC 19) with an average value of \$0.31 billion and \$1.23 billion, respectively. Finally, column (5) shows that the innovation intensity measure constructed using the U.S. data displays a generally similar pattern as the average number of patents and patent citations in our sample countries.

2.7. *Summary statistics*

We report the summary statistics of variables in Panel A of Table 2. All variables are winsorized at the 1% level at both tails of their distributions. The means of *Patent* and *Citation* are 87 and 179, respectively. The standard deviations of these two variables are quite large, which are 227 and 580, respectively. Given that innovation measures are highly skewed, we use the logarithm of one plus each innovation output proxy, i.e., Ln(1+Patent) and Ln(1+Citation), in the regression analyses. For country level variables, the mean of *Trust* is 0.3, and the means of Ln(GDP), *Trade*, *FinDev*, and *FormalInst* are 8.76, 0.58, 1.47, and 6.89 respectively. With respect to industry-level variables, we find that the means of Ln(VA) and *Intensity* are 7.22 and 0.1, respectively. For industry-level economic output growth measures, the average annual growth rates of industry value added ($\Delta Ln(VA)$) and industry TFP ($\Delta Ln(TFP)$) are -1.6% and -2.4%, respectively.¹⁷ For initial conditions of factor inputs, the means of Ln(VA), Ln(K) and Ln(Emp) are 7.29, 9.29, and 10.49, respectively.

[Insert Table 2 about here]

In Panel B of Table 2, we show the Pearson correlation matrix of the main variables in Panels A.1 and A.2. The correlation between Ln(1+Patent) and Ln(1+Citation) is fairly high at around 0.9. More importantly, the correlation between the two measures of innovation output and trust are 0.46 and 0.43, respectively, both significant at the 1% level. In line with previous literature, we find that social trust has a positive and significant correlation with Ln(GDP), Trade, FinDev, and Ln(VA) at the 1% level. In addition, consistent with Zak and Knack (2001), we find that social

¹⁷ Similar to previous studies, e.g., Arizala, Cavallo, and Galindo (2009) and Samaniego and Sun (2016), we also find some unusually large values for $\Delta Ln(VA)$ and $\Delta Ln(TFP)$ in our sample, which might be due to data errors in the UNIDO database.

trust is positively and significantly correlated with formal institutions, suggesting that countries with higher social trust also have better formal institutions. We turn to multivariate tests in the next section.

3. Empirical findings

3.1. Baseline results

We empirically examine the relation between trust and innovation by estimating the baseline regression model in Eq. (5) below.

Innovation_{*i*,*j*,*t*} = α + β Trust_{*j*,*t*-1} + $\gamma'X_{i,j,t-1}$ + Industry_{*i*} + Year_{*t*-1} + $\varepsilon_{i,j,t-1}$ (5), where Innovation represents the two innovation output measures, i.e., Ln(1+Patent) and Ln(1+Citation), in industry *i*, country *j*, and year *t*. Our main explanatory variable is Trust in country *j* measured in year *t*-1.¹⁸ X represents control variables in industry *i*, country *j*, and year *t*-1 described in Section 2.4. To account for time-invariant industry characteristics and business cycles, we also include industry and year fixed effects in the regressions.¹⁹ Our key interest is in β , which captures the relation between trust and innovation. We adjust standard errors for countrylevel clustering.

[Insert Table 3 about here]

Table 3 presents the baseline regression results. Regressions in columns (1) and (2) control for year fixed effects only and those in columns (3) and (4) control for both industry and year fixed effects. We find that social trust has a positive and significant relation with a country's industry-level innovation output measured by both the number of patents and the number of citations received by patents, with the *t*-statistics of the coefficients on *Trust* ranging from 3.2 to 3.8. The positive relation between social trust and corporate innovation is not only statistically significant but also economically meaningful. Specifically, a one standard deviation increase in social trust (0.151) is associated with a 64% increase in the number of patents and a 56% increase in the

¹⁹ Social trust in a country evolves slowly and thus the trust measure is persistent, but there are some small time-series variations. As a robustness check, we further include country fixed effects in the regressions and find similar results. Please see Section 3.2.1 for results from regressions with additional controls and country fixed effects.

number of patent citations, relative to their respective means.²⁰ These results are consistent with the hypothesis that social trust enhances innovation output in a country.

The coefficients of control variables are generally consistent with previous literature. For example, we find that Ln(GDP) has a positive and significant coefficient in all regressions, confirming that wealthier countries tend to be more innovative. *FinDev* also has a positive and significant coefficient, which supports the positive role of financial market in promoting innovation (Acharya and Subramanian, 2009; Hsu, Tian, and Xu, 2014). In addition, we find that Ln(VA) is positively associated with innovation at the 1% level for all regressions, confirming that larger industries tend to have more patents. Finally, in the absence of industry fixed effects, *Intensity* has a positive and significant coefficient, indicating that the patenting activities of U.S. firms in a given industry are positively correlated with those of non-U.S. firms in the same industry.

3.2. Identification

In this section, we employ multiple strategies to bolster our confidence in a causal interpretation of the positive relation between trust and innovation. The major challenge that we face is the omitted variable problem, i.e., some variables that are either unobservable or inadequately controlled for in our model are correlated with both trust and innovation. This is an especially pertinent concern for our study because there are many variables related to a country's political, legal, economic, and social environments that can be omitted variables. Another potential endogeneity concern is the reverse causality problem, i.e., innovation affects trust among individuals in a society.²¹ We employ four approaches below to address the above endogeneity issues.

3.2.1. Controlling for omitted variables

As our first approach, we augment the baseline regressions with additional explanatory variables that may correlate with both trust and innovation according to prior literature.

²⁰ Because $d[Ln(1+y)]/dx = 1/(1+y) \times dy/dx$, $dy = d[Ln(1+y)]/dx \times (1+y) dx$. For example, when quantifying the effect of the change in *Trust* (*dx*) on the change in *Patent* (*dy*), we increase *Trust* by one standard deviation (0.151), so dx = 0.151. The change in *Patent* (*dy*) from its mean value (86.977) is then equal to $4.203 \times (1+86.977) \times 0.151 = 55.835$, which amounts to 64% of the mean value of *Patent*.

²¹ This is unlikely to drive our results for two reasons. First, trust evolves very slowly because it is deeply rooted in individuals' ethnic, religious, familial, and social backgrounds and is a relatively persistent behavioral trait (Putnam, 1993; Fukuyama, 1995; Guiso, Sapienza, and Zingales, 2006, 2010). Second, it is not clear whether all innovation can have an impact on social trust, and for those that can, whether they build or erode trust.

Specifically, we add controls for a country's human capital, foreign direct investment, intellectual property protection, creditor and shareholder rights, accounting standards, dominant religion, and other cultural dimensions. In some specifications, we also control for country fixed effects as a way to remove the influence of any time-invariant country specific characteristics.

We measure human capital by the logarithm of the human capital index (*HCI*) from the Penn World Table (PWT) version 8.0, which captures the average education level in a country. Human capital is an important driver for innovation (Benhabib and Spiegel, 2005) and high-trust countries have more human capital (Papagapitos and Riley, 2009). We compute the ratio of foreign direct investment (*FDI*) in a country to the country's GDP based on information from the WDI database. Foreign direct investment can facilitate technology transfer and promote innovation (Javorcik, 2004; Haskel, Pereira, and Slaughter, 2007). Furthermore, we obtain the intellectual property protection index (*IPIndex*) from Park (2008), the creditor rights score (*CreditorRights*) from Djankov, McLiesh, and Shleifer (2007), the anti-self-dealing index (*ASDI*) from La Porta, Lopez-de-Silanes, and Shleifer (2006), and the auditing and accounting standards (*Accounting*) from the *Global Competitiveness Report* 2003-2004. Prior studies show that legal protection for key parties of firms' innovative activities and accounting standards affect innovation output (e.g., Fang, Lerner, and Wu, 2017; Acharya and Subramanian, 2009; Brown, Martinsson, and Petersen, 2013; Brown and Martinsson, 2015) and that trust can serve as a substitute for formal laws and regulations (Guiso et al., 2004; Carlin et al., 2009; and Aghion et al., 2010).²²

For religion, we follow Djankov, McLiesh, and Shleifer (2007) and construct six binary variables to represent whether the dominant religion in a country is Catholic, Protestant, Orthodox, Muslim, Buddhism, or others.²³ It has been shown that religious beliefs are related to social trust (Djankov, McLiesh, and Shleifer, 2007) and innovation activities (Benabou, Ticchi, and Vindigni, 2015). With respect to other dimensions of national culture, we control for Hofstede's (1980) uncertainty avoidance, power distance, and individualism measures, which prior research has related to firms' risk-taking incentives and innovation (Li et al., 2013; Chen, Podolski, and

²² Because the economic freedom index already captures the labor market regulations and the extent of bribery and favoritism in businesses in a country, we do not separately control for labor protection and corruption as in Acharya, Baghai, and Subramanian (2013) and Ellis, Smith, and White (2016). For additional assurance, our results are robust to controlling for the employee protection index from Botero et al. (2004) and the corruption index from the International Country Risk Guide (ICRG).

²³ Following Djankov, McLiesh, and Shleifer (2007), we put Judaism, Hindu, Indigenous, and Atheist in the "others" category, which is the omitted or base category in the regressions. Our results are robust to including all religions individually in the regressions.

Veeraraghavan, 2017).²⁴ We re-estimate Eq. (5) with different combinations of these additional control variables and present the results in columns (1) to (4) of Table 4. We find that trust continues to have a positive and significant coefficient.

[Insert Table 4 about here]

In columns (5) and (6) of Table 4, we further augment our regression with country fixed effects. This approach has the benefit of removing the confounding effects of any time-invariant countrylevel characteristics that are not explicitly controlled for in earlier specifications, but it comes at the cost of absorbing the substantial cross-country variations in our key explanatory variable, social trust, and leaving only within-country over-time variations to drive our results. In other words, given the slow-changing nature of a country's social trust level, controlling for country fixed effects represents a more stringent identification strategy but it risks underestimating the economic relation between trust and innovation. Because several additional controls included in columns (1) to (4) are time-invariant and therefore will be subsumed by country fixed effects, we supplement this model specification with two cultural dimensions constructed using the WVS data, i.e., individualism and hierarchy.²⁵ Unlike Hofstede's culture measures, these cultural values have some time-series variations because a country can be the subject of multiple waves of WVS.

We find that the coefficient on trust remains positive and significant across all the aforementioned specifications, attesting to the robustness of our main finding. The coefficient estimates of control variables are generally consistent with the prior literature. For example, in line with Fang, Lerner, and Wu (2017) and Benabou, Ticchi, and Vindigni (2015), we find that countries with stronger intellectual property protection generate more innovation, while more religious countries generate less innovation. Moreover, similar to Shane (1993), we find that social hierarchy (power distance) is negatively associated with innovation despite not significant in all specifications. Overall, the results in this section suggest that the positive relation between trust and innovation is unlikely to be driven by a country's education level, foreign direct investment,

²⁴ Hofstede's (1980) cultural indices include 6 dimensions: power distance, individualism, uncertainty avoidance, masculinity, long-term orientation, and indulgence. Our results are robust to controlling for all six.

²⁵ Specifically, individualism is between 0 and 1, with 0 representing completely agreeing with the statement of "*Incomes should be made more equal*" and 1 representing completely agreeing with the statement of "*We need larger income differences as incentives for individual effort*". Hierarchy is between 0 and 1, with 0 representing that the survey participant agrees with the statement of "*One should follow one's superior's instructions only when one is convinced that they are right*" and 1 representing that the survey participant agrees with the statement of "*One should follow one's superior's instructions only when one is convinced that they are right*" and 1 representing that the survey participant agrees with the statement of "*One should follow instructions even when one does not fully agree with them*".

intellectual property protection, creditor and shareholder protection, accounting standards, religious belief, other aspects of culture, and any other time-invariant country characteristics.²⁶

3.2.2. Inherited trust and innovation

To further mitigate the omitted variable concern and substantiate the forward causality running from social trust to innovation, we follow Algan and Cahuc (2010) and estimate the inherited component of social trust based on the beliefs of descendants of immigrants to the U.S. The rationale behind this approach is that children inherit their parents' social capital (e.g., Rice and Feldman, 1997; Putnam, 2000; Guiso, Sapienza, and Zingales, 2006), and the trust inherited by U.S. descendants from their ancestors who immigrated to the U.S. from different countries at different time periods (usually decades ago), is unlikely to be driven by the current conditions (e.g., political, economic, and industry) of their country of origin. Therefore, any relation between the inherited trust and innovation should be less susceptible to endogeneity concerns.

[Insert Table 5 about here]

We estimate the inherited trust using data from the General Social Survey (GSS) during the period of 1977-2008. The GSS records information on the trust beliefs of U.S. descendants of immigrants, and their ancestors' immigration periods and countries of origin. Similar to Algan and Cahuc (2010), we define U.S. descendants as the second-generation Americans (at least one parent born abroad), third-generation Americans (at least two grandparents immigrated to the U.S. and both parents were born in the U.S.), and fourth-generation Americans (more than two grandparents born in the U.S. and both parents born in the U.S.). After removing unidentified countries of origin and observations with missing values, we obtain a sample of 8,684 individual responses to the survey by U.S. descendants of immigrants from 30 countries. We infer the inherited trust by estimating Eq. (6) below:

$$iTrust_{i,c,t} = \gamma_0 + \gamma_1 X_{i,t} + Origin_c + Year_t + \varepsilon_{i,c,t}$$
(6).

iTrust is a binary variable that takes the value of one if respondent *i* with country of origin *c* in year *t* answers "*Most people can be trusted*" to the question "*Generally speaking, would you say that most people can be trusted or that you need to be very careful in dealing with people*?", and

 $^{^{26}}$ In untabulated tests, we also find that our results are robust to further controlling for a country's enforcement of insider trading laws, financial market liberalization, economic inequity, and economic uncertainty, or replacing the formal institutions control in Eq. (5) with a country's legal origin.

zero if the respondent answers "*Can't be too careful*".²⁷ X represents a vector of individual characteristics measured in year *t*, such as age and age squared, gender, education, employment status, religion, and income category. In addition, we include in the regression the country-of-origin fixed effects and year fixed effects.²⁸ While year fixed effects account for the impact of shocks in a particular year, the coefficient estimates of the country-of-origin fixed effects capture the inherited component of social trust for each country (*InheritedTrust*).

Comparing the inherited trust measure and the WVS trust measure, we find that country ranks based on the two measures are generally consistent. The signs of the coefficients of control variables in Eq. (6) are largely consistent with those in Algan and Cahuc (2010). For brevity, we do not tabulate the regression results of Eq. (6). We then replace the WVS trust measure in Eq. (5) with the inherited trust measure and re-estimate the regressions. Table 5 presents the regression results, which show that *InheritedTrust* has a positive and significant coefficient in both columns. This evidence provides additional support for a causal interpretation of the relation between trust and innovation.

3.2.3. The instrumental variable approach

In this section, we employ a two-stage least squares (2SLS) regression framework as another method to address the endogeneity concerns. We use the rate of intentional homicide per thousand population in each country and year (*Homicide*) as an instrument for social trust. These statistics are from the United Nations Surveys of Crime Trends and Operations of Criminal Justice System Series provided by the University of Michigan,²⁹ where intentional homicide is defined as unlawful death purposefully inflicted on a person by another person. According to Hilary and Huang (2015), crimes such as intentional homicide can adversely affect the level of trust among people in a society. However, the intentional homicide rate is unlikely to be directly related to individuals' or firms' incentive to innovate. It is worth noting that we already control for the strength of a country's legal institutions (as part of the economic freedom index) in the baseline regressions. Hence this instrument appears to satisfy both the relevance and exclusion criteria.

²⁷ There are a very small number of cases where the respondent answers "*Depends*", which we remove from the analysis. In an untabulated robustness test, we show that our results are not affected if we group these cases with either answer.

²⁸ To avoid perfect multicollinearity, we do not include the country of origin indicator for Yugoslavia. By doing so, we essentially treat the trust inherited by Yugoslavian Americans as the reference group in our sample.

²⁹ The data can be retrieved from <u>http://www.icpsr.umich.edu/icpsrweb/NACJD/studies/26462</u>.

[Insert Table 6 about here]

We report the results of the 2SLS regressions in Table 6. In the first stage regression in column (1), we observe that *Homicide* has a negative and significant coefficient, consistent with our conjecture that social trust is lower in societies with higher homicide rates. Our instrument also passes the weak instrument test with a *p*-value of less than 0.01. In the second stage regressions, we replace the actual value of social trust with the predicted value from the first stage regression. We find that the instrumented Trust (Trust) continues to have a positive and significant coefficient in columns (2) and (3). Therefore, our results are robust to correction for endogeneity.³⁰

3.2.4. A single-country analysis based on U.S. public firms

To further ensure that the relation between trust and innovation we document is not merely the byproduct of some country-level characteristics that we fail to control, we perform a single-country firm-level study using a sample of U.S. public firms, where we relate the level of social trust in a given state to the innovation activities of firms headquartered in that state. The major advantage of such an investigation is to ensure that firms operate in a uniform macro-environment at the country level. We choose the U.S. as the country for this analysis based on three considerations. First, information is available from the GSS to measure the state-level social trust in the U.S. Second, detailed accounting and stock return data are available for a comprehensive sample of publicly traded firms in the U.S. Third, because the U.S. is not part of our main sample, this analysis can be considered as an out-of-sample test.

We define state-level social trust as the average survey participant's response in each state and year to the following question in the GSS "*Generally speaking, would you say that most people can be trusted or that you need to be very careful in dealing with people*?" To isolate the effect of social trust on innovation output, we control for an array of firm characteristics in our regressions following Chang et al. (2015).³¹ Specifically, we first control for R&D expenses over total assets (*R&D/Assets*) as a measure of input to innovation and the logarithm of the net property, plant, and equipment scaled by the number of employees (*Ln(PPE/Emp)*) as a proxy for capital intensity.

³⁰ In an untabulated test, we use a country's ethnic heterogeneity as an alternative instrumental variable in the 2SLS regressions. It is well documented that ethnic diversity reduces social trust (Keefer and Knack, 1997; Putnam 2007; and Dinesen and Sønderskov, 2015). To the extent that diversity promotes innovation, this particular instrument choice would bias against our finding a positive relation between trust and innovation in the 2SLS regressions. Despite this bias, we still find that the instrumented trust has a positive and significant coefficient in the second stage regressions. ³¹ All firm characteristics are constructed using data from Compustat and CRSP.

Other firm characteristics include the leverage ratio (*Leverage*), the cash-to-assets ratio (*Cash/Assets*), the logarithm of total assets (Ln(Assets)) and the market-to-book ratio (*MB*) as proxies for firm size and growth opportunities respectively, the stock return (*Return*) and its volatility (*Volatility*) over the fiscal year, the return on assets (*ROA*) and the logarithm of firm age (Ln(Age)). In addition to firm characteristics, we also include several state characteristics. For example, we control for the logarithm of GDP per capita for each state each year (Ln(SGDP)) as a proxy for the level of local economic development. We also include state establishment entry rate (*Entry*) and exit rates (*Exit*) as well as state unemployment rates (*Unemployment*) to account for local economic conditions.³² Finally, we include industry and year fixed effects in the regressions and adjust standard errors for state-level clustering.

[Insert Table 7 about here]

Table 7 reports the regression results. We find that the level of social trust in a state is positively and significantly related to the innovation output of firms in that state. Their own caveat notwithstanding,³³ these results help alleviate the concern that the relation between trust and innovation that we document is just an artifact of some omitted country-level characteristics.

In sum, although we can never completely rule out the possibility of endogeneity driving our results, the collection of empirical approaches we apply and the body of corroborative evidence they produce point to a causal interpretation of the relation between trust and innovation.

3.3. Robustness tests

To ensure the validity of our results, we conduct a battery of robustness tests by employing various alternative variables and model specifications (see the Internet Appendix). We find that none of the following variations has a material impact on our results: (*a*) using per capita patent counts and citation counts as the dependent variables to further account for the effect of industry size (e.g., a larger industry may have a higher level of innovation output); (*b*) using two alternative measures of innovation output, i.e., the number of innovative firms and patent family size, as dependent variables; (*c*) replacing *Trust* with social distrust, the opposite of social trust,³⁴ as the

³² Data on state GDP and population are obtained from the Bureau of Economic Analysis and the U.S. Census Bureau, respectively, while data on state business entry and exit rates and state unemployment rates are extracted from the Business Dynamics Statistics of the U.S. Census Bureau and the U.S. Bureau of Labor Statistics, respectively.

³³ For example, it is impossible to control for all cross-state differences, just as it is for cross-country ones.

³⁴ Social distrust is measured as the percentage of survey participants in each country who responded affirmatively to the following question in the WVS: "*Do you think most people try to take advantage of you*?"

key explanatory variable; (*d*) including country-industry fixed effects and industry-year fixed effects in the regressions to further control for the impact of time-invariant industry characteristics in each country or time-varying industry-specific characteristics, such as worldwide industrial development or industry mergers waves; (*e*) clustering standard errors at both country and year levels to mitigate the concern on the presence of residual correlation in both country and year dimensions following the suggestion of Petersen (2009); (*f*) measuring trust in year *t*-5 (*Trust_{t-5}*) instead of year *t*-1 to capture the long-term nature of innovation process (Manso, 2011); (*g*) conducting an analysis at the technology-class level following Hsu, Tian, and Xu (2014);³⁵ (*h*) excluding patents first filed by domestic firms with foreign patent offices to alleviate the concern that multinational corporations may choose to setup a R&D center overseas or acquire innovative foreign firms for their innovation; and (*i*) adding the quadratic term of *Trust* to the regressions to investigate the possibility of non-monotonicity in the relation between trust and innovation.

In addition, in untabulated tests, we exclude Eastern Bloc countries before 1995 because of the regime changes in these countries in the early 1990s. Also, for all the countries in our sample, we exclude one of them at a time from the analysis. Our results remain intact, suggesting that the Eastern Bloc countries or any other country in particular is unlikely to be responsible for our findings.

4. Economic mechanisms

In this section, we explore cross-sectional variations in the relation between trust and innovation to shed light on the specific channels through which social trust can enhance innovation.

4.1. The collaboration channel

Innovation often entails the contribution of effort, intellectual inputs, and financial resources from multiple individuals and entities (Dougherty, 1992; Van de Ven, 1986), and its success hinges on the extent to which contractual arrangements can ensure sufficient investments by collaborating parties (Aghion and Tirole, 1994). Concerns about ex-post holdup or outright expropriation of intellectual property can reduce collaborating parties' incentives to make relationship-specific

³⁵ The technology class level analysis is at the two-digit IPC code but our results are robust if we use the three-digit IPC code. In an untabulated test, we also aggregate industry level data to the country level and conduct a country level analysis and find similar results.

investments. Effective contract enforcement and strong intellectual property protection can encourage collaboration among innovators by allowing them to capture the returns from their investments in highly risky innovative projects (Seitz and Watzinger, 2017; Lerner, 2009). However, writing and enforcing contracts on to-be-developed innovative products are particularly challenging and expensive. Meanwhile, a strong legal protection on innovators' intellectual inputs from the expropriation by their peers can be quite costly as it requires robust monitoring.

As an alternative, trust can increase the likelihood and efficiency of collaboration by mitigating collaborating parties' concerns about opportunistic behaviors of their partners. Following this logic, we would expect trust to play a more important role in facilitating collaboration and enhancing innovation output when the probability of ex-post holdup and intellectual property expropriation is higher ex ante. To examine this conjecture, we use the contract enforceability index constructed by Djankov et al. (2003) and the intellectual property protection index created by Park (2008) to capture the risks of ex-post holdup and intellectual property expropriation.³⁶ We first partition the sample at the sample median of these two indices and then estimate the regression specified in Eq. (5) in each subsample.³⁷ Table 8 present the results, with Panels A and B for the sample partition based on the contract enforceability index and the intellectual property protection index, respectively.

[Insert Table 8 about here]

We find that the coefficients on *Trust* are significantly positive in the subsamples of countries with weaker contract enforceability and intellectual property protection, but are insignificant in the other subsamples. Statistics from *F*-tests further show that the coefficient on *Trust* is significantly different between the two subsamples of countries with weaker and stronger contract enforceability or intellectual property protection, with *p*-values consistently below 0.05. These results suggests that trust indeed has a more pronounced effect on innovation when collaboration would have been more difficult due to the higher risks of ex-post holdup and intellectual property expropriation. As such, they provide support for our collaboration channel conjecture.

³⁶ The contract enforceability index, which has a scale from 0 (the lowest enforceability) to 10 (the highest enforceability), measures the relative degree to which contractual agreements are honored and complications presented by language and mentality differences. The intellectual property protection index is based on five unweighted scores that cover (i) inventions that are patentable, (ii) membership in international treaties, (iii) duration of protection, (iv) enforcement mechanisms, and (v) restrictions. For more information on the indices, see Djankov et al. (2003) and Park (2008), respectively.

³⁷ Given that our partitioning variables in this section are country-level variables, we partition the sample by country rather than by country-industry, which leads to unbalanced numbers of observations for the subsamples.

4.2. The tolerance channel

Innovation involves a high probability of failure due to its dependence on various unpredictable conditions (Holmstrom, 1989). Given risk-averse agents, the optimal incentive scheme that nurtures innovation should exhibit substantial tolerance for early failure and reward for long-term success (Manso, 2011). Strong legal protection for employees and debtor-friendly bankruptcy regimes alleviate employees' and firms' concerns about the adverse impact of innovation failure and hence encourage their risk-taking and innovation efforts (Acharya, Baghai, and Subramanian, 2014; Acharya and Subramanian, 2009). In lieu of such formal protections, a higher level of trust can encourage innovators to undertake risky ventures with less concern about potential adverse repercussions from failure, e.g., involuntary job separation for employees and forced liquidation for firms. In essence, trust can act as an informal insurance scheme for innovators and induce more risk-taking from them in the innovation process. Hence we expect that the positive impact of trust on innovation is stronger in countries with poorer employment protection and creditor-friendly bankruptcy regime, where the potential costs of innovation failure to innovators are higher.

To test this conjecture, we partition our sample into countries with strong and weak employee protection based on the employee protection index from Botero et al. (2004), and countries with creditor- or debtor-friendly bankruptcy regimes based on the debt enforcement information from Djankov et al. (2008).³⁸ We then re-estimate Eq. (5) in each subsample and present the results in Table 9, with Panels A and B for sample partitions based on employee protection and bankruptcy regimes, respectively.

[Insert Table 9 about here]

We find that the effect of trust on innovation is primarily concentrated in the subsamples of countries with weak employee protection and creditor-friendly bankruptcy regimes, where the insurance afforded to innovators by laws and regulations appears to be weak. Specifically, the coefficient estimates of *Trust* are positive and significant at the 1% level in these subsamples, but are insignificant in the subsamples of countries with strong employee protection and debtor-

³⁸ The employee protection index is computed as a sum of the employment laws index, collective relations laws index, and social security laws index. A higher employee protection index indicates better employee protection. We classify a country's bankruptcy regime as debtor friendly if reorganization is likely to be used in a bankruptcy proceeding, and creditor friendly if foreclosure or liquidation is likely to be used, based on the debt enforcement information from Djankov et al. (2008).

friendly bankruptcy regimes. The coefficient difference between subsamples is mostly significant with *p*-values of less than 0.05, except for the case with Ln(1+Citation) as the dependent variable and the bankruptcy regime as the partitioning variable, where the *p*-value is equal to 0.12. These results support the notion that trust as a tolerance mechanism promotes innovation when the costs of innovation failures are high for employees and firms.

4.3. The funding channel

Innovative firms often need external financing because they can easily exhaust internal funds (Brown, Fazzari, and Petersen, 2009; Brown, Martinsson, and Petersen, 2012, 2013). Given the nature of their investments, these firms tend to face greater information asymmetry and higher costs of capital, which may hinder their innovation efforts. Investors in high trust countries perceive less information asymmetry (Pevzner, Xie, and Xin, 2015; Garrett, Hoitash, and Prawitt, 2014), are less concerned about managerial moral hazard, and are more willing to supply capital to firms (Guiso, Sapienza, and Zingales, 2008a; Bottazzi, Da Rin, and Hellmann, 2016). Therefore, trust can promote corporate innovation by increasing firms' access to external capital. We expect this role of trust to be more important in countries with poor financial disclosure and lax auditing and accounting standards, where corporate information environments are more opaque and external finance is more costly.

To examine this conjecture, we partition our sample at the sample median of a country's financial disclosure score or the strength of auditing and accounting standards and re-estimate Eq. (5) separately in each subsample.³⁹ Table 10 reports the regression results. We find that the coefficient estimates of *Trust* are positive and significant at the 1% level in the subsamples of countries with lower financial disclosure scores or weaker auditing and accounting standards, but are insignificant in the subsamples of countries with higher financial disclosure scores and stronger auditing and accounting standards. Furthermore, the between-subsample differences in the coefficients of *Trust* are all statistically significant at the 1% level. These findings are consistent

³⁹ Information on a country's financial disclosure score is from the *Global Competitiveness Report* 1999, which measures the level and effectiveness of financial disclosure in different countries. This score has been used in many prior studies such as Gelos and Wei (2002) and Jin and Myers (2006). Information on the strength of a country's auditing and accounting standards is from the *Global Competitiveness Report* 2003-2004, when *Global Competitiveness Report* 2003-2004, when *Global Competitiveness Report* first compiles this measure.

with our funding channel conjecture that trust enhances innovation by mitigating information asymmetry between investors and firms and improving firms' access to external capital.

[Insert Table 10 about here]

5. Trust, innovation, and economic growth

5.1. The effect of trust on economic growth as a function of industry innovativeness

Although our findings indicate that trust plays a positive role in encouraging innovation output in a country, an important question remains unanswered: Does trust affect a country's economic growth through innovation? To answer this question, we examine the effect of trust on industry value added growth and ask how the effect differs between more innovative and less innovative industries. Specifically, we first examine the effect of trust on economic growth by estimating Eq. (7):

 $\Delta Ln(VA)_{i,j,[t-1,t]} = \alpha + \beta Trust_{j,t-1} + \gamma' Z_{i,j,t-1} + Industry_i + Year_{t-1} + \varepsilon_{i,j,t-1}$ (7). $\Delta Ln(VA)$ represents the growth of industry value added from year *t*-1 to year *t* in industry *i* and country *j*. The main explanatory variable is still *Trust* in country *j* and year *t*-1. *Z* represents control variables in industry *i*, country *j*, and year *t*-1 described in Sections 2.4 and initial conditions of factor inputs in industry *i*, country *j* and year *t*-1 described in Section 2.5. The results are presented in column (1) of Table 11. Consistent with the previous literature (e.g., La Porta et al., 1997; Knack and Keefer, 1997; Zak and Knack, 2001), we find that trust does have a positive effect on industry value added growth and this effect is statistically significant at the 10% level.

[Insert Table 11 about here]

Next, we examine whether innovation is a channel through which trust promotes economic growth. If it indeed is, we would expect the positive effect of trust on industry value added growth to be more pronounced for industries with more innovation potential than for industries with less innovation potential. To test this conjecture, we split the sample into high and low innovation potential groups according to the sample median of *Intensity*, and estimate regressions separately for the two groups. The results are presented in columns (2) and (3) of Table 11. We find that the positive effect of trust on industry value added growth is mainly concentrated in industries with more innovation potential: the coefficient estimate of *Trust* is only significant for high innovation potential industries and insignificant for low innovation potential industries. Moreover, the magnitude of the coefficient estimate of *Trust* for more innovative industries is significantly larger

than that for less innovative industries with a p-value of 0.08. These results suggest that one channel through which trust drives economic growth is by enhancing innovation output in more innovative industries.

5.2. The effect of trust on productivity growth as a function of industry innovativeness

Prior literature suggests that innovation contributes to economic growth mainly through enhancing productivity growth (Solow, 1957; Romer, 1986). In this section, we incorporate this insight into our analysis by examining the effect of trust on industry total factor productivity (TFP) growth and whether the effect differs across industries with different innovation potentials. We expect to find a positive effect of trust on industry productivity growth and a stronger effect in more innovative industries. To examine our conjecture, we first estimate Eq. (8) below:

 $\Delta Ln(TFP)_{i,j,[t-1,t]} = \alpha + \beta Trust_{j,t-1} + \gamma' Z_{i,j,t-1} + Industry_i + Year_{t-1} + \varepsilon_{i,j,t-1}$ (8). $\Delta Ln(TFP)$ represents the growth of industry TFP from year *t*-1 to *t* in industry *i* and country *j*. Other variables are the same as in Section 5.1. We then partition the sample into high and low innovation intensity groups according to the sample median of *Intensity*, and estimate regressions separately for the two groups. The results are presented in columns (4) to (6) of Table 11.

In column (4), we find that the coefficient estimate of *Trust* is positive and significant at the 5% level, suggesting that trust does improve industry TFP growth. More importantly, the results in columns (5) and (6) indicate that trust promotes productivity growth mainly in more innovative industries; the coefficient estimate on *Trust* is highly significant for high innovation intensity industries but insignificant for low innovation intensity industries. The magnitude of the coefficient is also significantly larger in high innovation intensity industries than in low innovation intensity industries with a p-value of 0.07. These results suggest that trust has a positive effect on productivity growth through fostering firms' innovation especially in more innovative industries.

Taken together, the empirical evidence in Sections 5.1 and 5.2 complements the findings in previous studies, e.g., La Porta et al. (1997), Knack and Keefer (1997), and Zak and Knack (2001), by identifying innovation as a source for the positive relation between trust and economic growth. Furthermore, such a positive effect is likely to be permanent as a result of an improvement in productivity growth.

6. Conclusion

We investigate two competing views on how social trust affects corporate innovation using a large sample of observations drawn from 42 countries around the world. Our analyses indicate that trust has a positive and significant relation with innovation activities in a country, and multiple identification strategies suggest that the relation is causal. The effect of trust on innovation exhibits interesting cross-sectional variations along several dimensions of country characteristics. Specifically, our evidence suggests that trust plays a more important role in enhancing innovation in countries with poor contract enforceability and weak protection for intellectual property, in countries with weak protection for employees and creditor-friendly bankruptcy regimes, and in countries with insufficient financial disclosure and lax accounting and auditing standards. These results highlight three economic channels through which trust enhances innovation, i.e., the collaboration channel, the tolerance for failure channel, and the funding channel. Finally, our investigation indicates that innovation is an important conduit through which trust contributes to economic growth. Specifically, we find that trust is positively related to the growth of an industry's value added and total factor productivity, particularly for industries with more innovation potential.

In terms of policy implications, our results suggest that countries, especially those with underdeveloped formal institutions, can improve the innovation output of their economy by fostering more trust in the society. One possible approach toward that objective would be a well thought-out public education program as suggested by Aghion et al. (2010), because public education can build trust by creating more opportunities for individuals to interact with each other and have shared experience and beliefs (Glaeser, Ponzetto, and Shleifer 2007). Such measures may be especially important for countries whose population is becoming more diverse in ethnic, religious, and cultural backgrounds, because their innovation effort may otherwise suffer as a result of the potential eroding effect of diversity on social trust (Putnam, 2007).

References

- Acharya, V.V., Baghai, R., Subramanian, K., 2013. Labor laws and innovation. Journal of Law and Economics 68, 2059 2116.
- Acharya, V.V., Baghai, R., Subramanian, K., 2014. Wrongful discharge laws and innovation. Review of Financial Studies 27, 301 346.
- Acharya, V.V., Subramanian, K., 2009. Bankruptcy codes and innovation. Review of Financial Studies 22, 4949 4988.
- Aghion, P., Algan, Y., Cahuc, P., Shleifer, A., 2010. Regulation and distrust. Quarterly Journal of Economics 125, 1015 1049.
- Aghion, P., Tirole, J., 1994. The management of innovation. Quarterly Journal of Economics 109, 1185 1209.
- Aghion, P., Van Reenen, J., Zingales, L., 2013. Innovation and institutional ownership. American Economic Review 103, 277 304.
- Ahern, K.R., Daminelli, D., Fracassi, C., 2015. Lost in translation? The effect of cultural values on mergers around the world. Journal of Financial Economics 117, 165 189.
- Algan, Y., Cahuc, P., 2010. Inherited trust and growth. American Economic Review 100, 2060 2092.
- Arizala, R., Cavallo, E., Galindo, A., 2009. Financial development and TFP growth: Cross-country and industry-level evidence. Inter-American Development Bank Working Paper.
- Atanassov, J., 2013. Do hostile takeovers stifle innovation? Evidence from antitakeover legislation and corporate patenting. Journal of Finance 68, 1097 1131.
- Benabou, R., Ticchi, D., Vindigni, A., 2015. Religion and innovation. American Economic Review, Papers and Proceedings, 105, 346 351.
- Benhabib, J., Spiegel, M.M., 2005. Chapter 13 Human capital and technology diffusion. Handbook of Economic Growth 1, 935 966.
- Botero, J.C., Djankov, S., La Porta, R., Lopez-de-Silanes, F., Shleifer, A., 2004. The regulation of labor. Quarterly Journal of Economics 119, 1339 – 1382.
- Bottazzi, L., Da Rin, M, Hellmann, T., 2016. The importance of trust for investment: Evidence from venture capital. Review of Financial Studies 29, 2283 2318.
- Brown, J.R, Fazzari, S. M., Petersen, B.C., 2009. Financing innovation and growth: Cash flow, external equity, and the 1990s R&D boom. Journal of Finance 64, 151 185.
- Brown, J.R., Martinsson, G., 2015. Does transparency stifle innovation? Evidence from R&D activity in different information environments. Working Paper.
- Brown, J.R., Martinsson, G., Petersen, B.C., 2012. Do financing constraints matter for R&D? European Economic Review 56, 1512 1529.
- Brown, J.R., Martinsson, G., Petersen, B.C., 2013. Law, stock markets, and innovation. Journal of Finance 68, 1517 1549.
- Butler, J.V., Giuliano, P., Guiso, L., 2016. The right amount of trust. Journal of the European Economic Association 14, 1155 1180.
- Carlin, B.I., Dorobantu, F., Viswanathan, S., 2009. Public trust, the law, and financial investment. Journal of Financial Economics 92, 321 341.
- Caselli, F., 2005. Accounting for cross-country income differences in Phillipe Aghion and Steven N. Durlauf (eds.) Handbook of Economic Growth 1A, 679 741.
- Chang, X., Fu., K, Low, A., Zhang, W., 2015. Non-executive employee stock options and corporate innovation. Journal of Financial Economics 115, 168 188.
- Chang, X., Mclean, R.D., Zhang, B., Zhang, W., 2016. Innovation and productivity growth: Evidence from global patents. Working Paper.
- Chen, Y., Podolski, E.J., Veeraraghavan, M., 2017. National culture and corporate innovation. Pacific-Basin Finance Journal 43, 173 187.
- Cohen, W.M., 1995. Empirical studies of innovative activity. Handbook of the Economics of Innovation and Technical Changes. Oxford: Blackwell.

- Cohen, W.M., Nelson, R.R., Walsh, J.P., 2000. Protecting their intellectual assets: Appropriability conditions and why U.S. manufacturing firms patent (or not). NBER Working Paper.
- Dinesen, P.T., Sønderskov, K.M., 2015. Ethnic diversity and social trust: Evidence from the micro-context. American Sociological Review 80, 550 573.
- Djankov, S., Hart, O., McLiesh, C., Shleifer, A., 2008. Debt enforcement around the world. Journal of Political Economy 116, 1105 1149.
- Djankov, S., La Porta, R., Lopez-de-Silanes, F., Shleifer, A., 2003. Courts. Quarterly Journal of Economics 118, 453 517.
- Djankov, S., McLiesh, C., Shleifer, A., 2007. Private credit in 129 countries. Journal of Financial Economics 84, 299 329.
- Dougherty, D., 1992. Interpretive barriers to successful product innovation in large firms. Organization Science 3, 179 202.
- Dovey, K., 2009. The role of trust in innovation. Learning Organization 16, 311 325.
- Dudley, E., Wang, J., Zhang, B., Zhang, N., 2017. The equity price of social capital. Working Paper.
- Ederer, F., Manso, G., 2013. Is pay for performance detrimental to innovation? Management Science 59, 1496 1513.
- Ellis, J., Smith, J., White, R., 2016. Corruption and corporate innovation. Working Paper.
- Fang, L.H., Lerner, J., Wu, C., 2017. Intellectual property rights protection, ownership, and innovation: Evidence from China. Review of Financial Studies, forthcoming.
- Fogel, K., Morck, R., Yeung, B., 2008. Big business stability and economic growth: Is what's good for GM good for America? Journal of Financial Economics 89, 83 108.
- Fountain, J.E., 1998. Social capital: Its relationship to innovation in science and technology. Science and Public Policy 25, 103 115.
- Fukuyama, F., 1995. Trust: Social virtues and the creation of prosperity. New York: Free Press.
- Gambetta, D., 1988. Trust: Making and breaking cooperative relations. Oxford: Blackwell.
- Garrett, J., Hoitash, R., Prawitt, D., 2014. Trust and financial reporting quality. Journal of Accounting Research 52, 1087 1125.
- Gelos, R.G., Wei, S.-J., 2002. Transparency and international investor behavior. NBER Working Paper.
- Giannetti, W., Wang, T., 2016. Corporate scandals and household stock market participation. Journal of Finance 71, 2591 2636.
- Glaeser, E.L, Ponzetto, G.A.M., Shleifer, A., 2007. Why does democracy need education? Journal of Economic Growth 12, 77 99.
- Guiso, L., Sapienza, P., Zingales, L., 2004. The role of social capital in financial development. American Economic Review 94, 526 556.
- Guiso, L., Sapienza, P., Zingales, L., 2006. Does culture affect economic outcomes? Journal of Economic Perspectives 20, 23 48.
- Guiso, L., Sapienza, P., Zingales, L., 2008a. Trusting the stock market. Journal of Finance 63, 2557 2600.
- Guiso, L., Sapienza, P., Zingales, L., 2008b. Social capital as good culture. Journal of the European Economic Association 6, 295 320.
- Guiso, L., Sapienza, P., Zingales, L., 2009. Cultural biases in economic exchange. Quarterly Journal of Economics 124, 1095 1131.
- Guiso, L., Sapienza, P., Zingales, L., 2010. Civic capital as the missing link, in Handbook of Social Economics. Oxford: Elsevier Science.
- Guiso, L., Sapienza, P., Zingales, L., 2015. The value of corporate culture. Journal of Financial Economics, 117, 60 76.
- Hall, B.H., Jaffe, A.B., Trajtenberg, M., 2001. The NBER patent citations data file: Lessons, insights and methodological tools. NBER Working Paper.
- Hall, B.H., Jaffe, A.B., Trajtenberg, M., 2005. Market value and patent citations. Rand Journal of Economics 36, 16 38.
- Harberger, A.C., 1978. Perspectives on capital and technology in less developed countries. In: M. J. Artis and A. R. Nobay (Eds.): Contemporary Economic Analysis, London, 42 72.

- Haskel, J.E., Pereira, S.C., Slaughter, M.J., 2007. Does inward foreign direct investment boost the productivity of domestic firms? Review of Economics and Statistics 89, 482 496.
- Hilary, G., Huang, S., 2015. Trust and contracting. INSEAD Working Paper.
- Hirshleifer, D., Low, A., Teoh, S.H., 2012. Are overconfident CEOs better innovators? Journal of Finance 67, 1457 1498.
- Hofstede, G., 1980. Culture's consequences: International differences in work-related values. Beverly Hills, CA: Sage.
- Holmstrom, B., 1989. Agency costs and innovation, Journal of Economic Behavior and Organization 12, 305 327.
- Hsu, P.-H., Tian, X., Xu, Y., 2014. Financial development and innovation: Cross-country evidence. Journal of Financial Economics 112, 116 135.
- Javorcik, B.S., 2004. Does foreign direct investment increase the productivity of domestic firms? In search of spillovers through backward linkages. American Economic Review 94, 605 627.
- Jin, L., Myers, S.C., 2006. R² around the world: New theory and new tests. Journal of Financial Economics 79, 257 292.
- Knack, S., Keefer, P., 1997. Does social capital have an economic pay-off? A cross-country investigation. Quarterly Journal of Economics 112, 1251 – 1288.
- Kogan, L., Papanikolaou, D., Seru, A., Stoffman, N., 2016. Technological innovation, resource allocation, and growth. Quarterly Journal of Economics, forthcoming.
- Koh, P.S., Reeb, D.M., 2015. Missing R&D. Journal of Accounting and Economics 60, 73 94.
- Koh, P.S., Reeb, D.M., Sojli, E., Tham, W.W., 2016. Measuring innovation around the world. Working Paper.
- La Porta, R., Lopez-de-Silanes, F., Shleifer, A., Vishny, R.W., 1997. Trust in large organizations. American Economic Review Papers and Proceedings 87, 333 338.
- La Porta, R., Lopez-de-Silanes, F., Shleifer, A., 2006. What works in securities laws? Journal of Finance 61, 1 32.
- Lerner, J., 2009. The empirical impact of intellectual property rights on innovation: Puzzles and clues. American Economic Review 99, 343 – 348.
- Levine, R., Lin, C., Xie, W., 2017. Corporate resilience to banking crises: The roles of trust and trade credit. Journal of Financial and Quantitative Analysis, forthcoming.
- Li, K., Griffin, D.W., Yue, H., Zhao, L., 2013. How does culture influence corporate risk-taking? Journal of Corporate Finance 23, 1 22.
- Lins, K., Servaes, H., Tamayo, A., 2017. Social capital, trust, and firm performance: The value of corporate social responsibility during the financial crisis. Journal of Finance, forthcoming.
- Lybbert, T.J., Zolas, N.J., 2014. Getting patents and economic data to speak to each other: An 'Algorithmic Links with Probabilities' approach for joint analyses of patenting and economic activity. Research Policy 43, 530 542.
- Manso, G., 2011. Motivating innovation. Journal of Finance 66, 1823 60.
- Moshirian, F., Tian, X., Zhang, B., Zhang, W., 2015. Financial liberalization and innovation. Working Paper.
- Nehru, V., Dhareshwar, A., 1993. A new database on physical capital stock: Sources, methodology and results. Revista de Analisis Economico 8, 37 59.
- Papagapitos, A., Riley, R., 2009. Social trust and human capital formation. Economic Letters 102, 158 160.
- Park, W., 2008, International patent protection, 1960-2005. Research Policy 37, 761 766.
- Petersen, M.A., 2009. Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies 22, 435 480.
- Pevzner, M., Xie, F., Xin, X., 2015. When firms talk, do investors listen? The role of trust in stock market reactions to corporate earnings announcements. Journal of Financial Economics 117, 190 223.
- Putnam, R.D., 1993. Making democracy work: Civic tradition in modern Italy. Princeton: Princeton University Press.

- Putnam, R.D., 2000. Bowling alone: The collapse and revival of American community. New York: Simon and Schuster.
- Putnam, R.D., 2007. E pluribus unum: Diversity and community in the twenty-first century the 2006 Johan Skytte Prize Lecture. Scandinavian Political Studies 30, 137 174.
- Rice, T.W., Feldman, J., 1997. Civic culture and democracy from Europe to America. Journal of Politics 59, 1143 1172.
- Romer, P.M., 1986. Increasing returns and long-run growth. Journal of Political Economy 94, 1002 1037.
- Samaniego, R.M., Sun, J.Y., 2016. Productivity growth and structural transformation. Review of Economic Dynamics 21, 266 285.
- Seitz, M., Watzinger, M., 2017. Contract enforcement and R&D investment. Research Policy 46, 182 195.
- Seru, A., 2014. Firm boundaries matter: Evidence from conglomerates and R&D activity. Journal of Financial Economics 111, 381 405.
- Shane, S., 1993. Cultural influences on national rates of innovation. Journal of Business Venturing 8, 59 73.
- Solow, R., 1956. A Contribution to the theory of economic growth. Quarterly Journal of Economics 70, 65 94.
- Van de Ven, A.H., 1986. Central problems in the management of innovation. Management Science 32, 590 -607.
- Williamson, C.R., Mathers, R.L., 2011. Economic freedom, culture, and growth. Public Choice 148, 313 335.
- Williamson, O.E., 1993. Calculativeness, trust, and economic organization. Journal of Law and Economics 36, 453 486.
- Zak, P.J., Knack, S., 2001. Trust and growth. Economic Journal 111, 295 321.

Table 1: Sample distribution

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the World Value Survey (WVS) between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. In Panel A, *Patent* is the total number of patents in a particular country over the sample period. *Citation* is the total number of patent citations adjusted for time-technology class fixed effects in a particular country over the sample period. *Trust* is the country average and is defined using the WVS.

Country	(1)	(2) (3)		(4)
Country	Ν	Patent	Citation	Trust
Argentina	238	70	114	0.177
Australia	314	10,134	26,436	0.436
Brazil	336	444	920	0.048
Bulgaria	235	188	52	0.267
Canada	172	23,916	129,428	0.389
Chile	268	104	164	0.205
China	349	121,780	55,955	0.547
Colombia	222	24	71	0.124
Czech Republic	282	5,077	1,739	0.288
Estonia	162	79	59	0.215
Finland	399	21,175	43,009	0.532
France	43	15,450	6,212	0.187
Germany	229	132,115	348,250	0.335
Hong Kong	30	617	1,718	0.411
Hungary	374	1,146	535	0.265
India	374	3,567	8,651	0.357
Indonesia	156	5	56	0.478
Israel	133	4,413	25,143	0.235
Italy	66	2,383	3,309	0.292
Japan	392	220,054	686,325	0.417
Jordan	140	7	0	0.287
Korea	407	150,958	219,884	0.307
Latvia	253	120	24	0.247
Lithuania	184	29	5	0.219
Malaysia	46	82	45	0.088
Mexico	376	455	2,170	0.255
Morocco	157	13	0	0.200
Netherlands	40	7,499	13,309	0.445
New Zealand	110	714	1,590	0.503
Norway	232	3,023	4,015	0.653
Philippines	184	14	80	0.071
Poland	379	6,622	487	0.239
Romania	222	722	140	0.193
Russia	226	4,636	4,558	0.248
Singapore	128	3,270	12,515	0.147
Slovenia	285	894	336	0.164
South Africa	261	1,940	3,116	0.168
Spain	399	25,201	5,945	0.306
Sweden	263	23,708	43,013	0.656
Switzerland	256	47,827	91,588	0.404
Turkey	394	4,280	672	0.113
United Kingdom	228	20,149	33,920	0.299
Total	9,944	864,904	1,775,557	0.296

Panel A: Sample distribution by country

Table 1: Sample distribution (cont'd)

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. In Panel B, all values are industry average at the two-digit ISIC. *Patent* is the total number of patents in a two-digit ISIC industry for each country each year. *Citation* is the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. *VA* is value-added (in \$millions) in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars.

ISIC	ISIC description	(1)	(2)	(3)	(4)	(5)
ISIC	ISIC description	Ν	Patent	Citation	VA	Intensity
15	Food and beverages	478	76.773	185.751	74,135	0.103
16	Tobacco products	325	6.836	9.801	20,613	0.093
17	Textiles	469	139.537	267.635	48,950	0.118
18	Wearing apparel, fur	446	133.631	247.867	43,159	0.184
19	Leather, leather products and footwear	394	5.000	7.763	1,225	0.036
20	Wood products (excluding furniture)	476	21.110	30.687	8,554	0.037
21	Paper and paper products	467	33.408	58.095	27,709	0.073
22	Printing and publishing	463	97.508	172.101	21,772	0.098
23	Coke, refined petroleum products, nuclear fuel	385	31.513	69.286	26,615	0.069
24	Chemicals and chemical products	459	179.940	429.784	74,084	0.122
25	Rubber and plastics products	476	32.758	70.901	36,050	0.065
26	Non-metallic mineral products	473	67.243	118.283	44,004	0.037
27	Basic metals	463	85.008	157.500	61,664	0.048
28	Fabricated metal products	465	145.424	310.997	11,422	0.071
29	Machinery and equipment, not else classified	467	198.571	418.020	60,437	0.159
30	Office, accounting and computing machinery	352	188.211	439.670	1,951	0.208
31	Electrical machinery and apparatus	463	57.156	93.000	55,114	0.060
32	Radio, television and communication equipment	373	135.939	289.838	8,954	0.107
33	Medical, precision and optical instruments	456	158.627	360.211	22,739	0.192
34	Motor vehicles, trailers, semi-trailers	464	90.571	176.083	62,450	0.212
35	Other transport equipment	391	31.636	53.517	3,240	0.115
36	Furniture; manufacturing, not else classified	464	34.518	50.876	3,874	0.055
37	Recycling	275	0.641	0.789	309	0.031

Panel B: Sample average by industry

Table 2: Summary statistics

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. *Patent* and *Citation* are the total number of patents and the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. *Trust* is defined using the WVS. *Ln(GDP)* is the log of GDP per capita. *Trade* is a country's imports plus exports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. *Ln(VA)* is the log of value-added (in \$millions) in a two-digit ISIC industry for each country each year. *VA*, *K*, and *Emp* are value-added (in \$millions), capital stock (in \$millions), and total number of employees in a two-digit ISIC industry for each country each year. *ALn(VA)* and *ALn(TFP)* are annual value added growth and TFP growth. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. Figures in bold in Panel B are statistically significant at the 1% level.

Panel A: Descriptive statist	ics							
Variables	Mean	STD	Min	Q1	Median		Q3	Max
Panel A.1: Measures of inne	ovation output (N = 9,9	44)						
Patent	86.977	226.833	0.000	0.241	4.136		38.623	1,071.686
Ln(1+Patent)	2.193	2.100	0.000	0.216	1.636		3.679	6.978
Citation	178.556	579.787	0.000	0.000	1.820		39.945	3,606.328
Ln(1+Citation)	2.071	2.401	0.000	0.000	1.037		3.712	8.191
Panel A.2: Explanatory var	iables (N = 9,944)							
Trust	0.303	0.151	0.028	0.195	0.286		0.391	0.680
Ln(GDP)	8.764	1.205	5.747	8.020	8.627		9.934	10.580
Trade	0.576	0.462	0.056	0.280	0.457		0.811	3.116
FinDev	1.474	1.048	0.195	0.708	1.103		1.966	5.065
FormalInst	6.893	0.994	3.550	6.196	7.009		7.598	9.028
Ln(VA)	7.224	2.137	-0.027	5.890	7.338		8.633	16.795
Intensity	0.100	0.057	0.023	0.058	0.092		0.123	0.275
Panel A.3: Measures of eco	nomic growth $(N = 7,48)$	37)						
$\Delta Ln(VA)$	-0.016	0.278	-1.272	-0.115	0.016		0.126	0.689
$\Delta Ln(TFP)$	-0.024	0.246	-1.079	-0.113	0.010		0.109	0.526
Ln(VA)	7.286	2.217	-0.027	5.938	7.392		8.735	16.795
Ln(K)	9.286	3.730	2.051	7.035	8.801		10.556	19.420
Ln(Emp)	10.489	1.802	5.966	9.243	10.586		11.792	14.220
Panel B: Correlation matrix	r							
	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citatio	on) Trust	Ln(GDP)	Trade	FinDev	FormalInst	Ln(VA)
Ln(1+Citation)	0.895							
Trust	0.455	0.432						
Ln(GDP)	0.493	0.569	0.318					
Trade	0.093	0.156	0.079	0.464				
FinDev	0.492	0.585	0.269	0.540	0.311			
FormalInst	0.326	0.463	0.272	0.725	0.560	0.633		
Ln(VA)	0.544	0.500	0.115	0.177	-0.259	0.257	-0.071	
Intensity	0.193	0.166	-0.004	0.001	0.011	0.000	-0.007	0.007

Table 3: The effect of social trust on innovation

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Trust is defined using the WVS. Ln(GDP) is the log of GDP per capita. Trade is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. *Intensity* is the median number of patents held by a U.S. firm in a two-digit ISIC industry each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Demendent verichles	(1)	(2)	(3)	(4)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)
Trust	4.210***	3.701***	4.203***	3.698***
	(3.2)	(3.8)	(3.2)	(3.8)
Ln(GDP)	0.431**	0.443**	0.433**	0.441**
	(2.6)	(2.4)	(2.5)	(2.3)
Trade	0.128	-0.012	0.101	-0.038
	(0.6)	(-0.0)	(0.4)	(-0.1)
FinDev	0.387**	0.541***	0.396**	0.549***
	(2.4)	(3.2)	(2.3)	(3.0)
FormalInst	-0.159	0.236	-0.168	0.230
	(-0.8)	(1.2)	(-0.8)	(1.1)
Ln(VA)	0.439***	0.454***	0.433***	0.450***
	(5.2)	(5.2)	(4.2)	(4.3)
Intensity	7.080***	7.028***	1.032	1.636
	(10.0)	(8.0)	(0.8)	(1.1)
Year FE	Yes	Yes	Yes	Yes
Industry FE	No	No	Yes	Yes
Observations	9,944	9,944	9,944	9,944
R-squared	0.61	0.64	0.65	0.67

Table 4: Controlling for potential omitted variables

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database. the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Trust is defined using the WVS. HCI is the log of human capital index from the Penn World Table (PWT) 8.0. FDI is a country's foreign direct investment over GDP from the World Bank WDI database. IPIndex is the intellectual property protection index from Park (2008). CreditorRights is the creditor rights score from Djankov, McLiesh, and Shleifer (2007). ASDI is the anti-self-dealing index from La Porta, Lopez-de-Silanes, and Shleifer (2006). Accounting is the auditing and accounting standards from the Global Competitiveness Report 2003-2004. Catholic, Protestant, Orthodox, Muslim, and Buddhism are binary variables that take the value of one if a country's primary religious belief is one of these five religions, and zero otherwise. In columns (3) and (4), $UncertAvoid_H$, $PowerDist_H$, and $Individualism_H$ are Hofstede's culture dimensions. In columns (5) and (6), *Individualismy* and *Hierarchyw* are culture dimensions in the WVS. Control variables are the same as those in Table 3. The t-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent	(1)	(2)	(3)	(4)	(5)	(6)
variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)
Trust	3.325***	2.646***	3.169***	1.730**	2.800***	1.917**
	(4.9)	(3.1)	(3.9)	(2.1)	(2.9)	(2.1)
HCI	-0.590	-0.545	-0.846	-0.168	3.444**	3.060*
	(-0.8)	(-0.6)	(-1.3)	(-0.2)	(2.7)	(1.8)
FDI	-0.025	-0.059***	-0.022	-0.059***	-0.000	-0.005
	(-1.6)	(-3.5)	(-1.4)	(-3.5)	(-0.1)	(-0.7)
IPIndex	1.264***	0.705***	1.262***	0.756***	0.468***	0.434***
	(5.8)	(3.4)	(6.1)	(3.7)	(3.0)	(3.0)
CreditorRights	0.190	-0.150	0.163	-0.142		
	(1.2)	(-0.6)	(0.8)	(-0.6)		
ASDI	-1.142	-0.689	-0.993	-1.322		
	(-1.4)	(-0.6)	(-1.0)	(-1.1)		
Accounting	-0.186	0.424*	-0.288	0.406**		
	(-0.9)	(1.8)	(-1.3)	(2.2)		
Catholic	-1.301***	-1.644***	-1.408***	-1.461***		
	(-3.4)	(-3.3)	(-3.8)	(-3.6)		
Protestant	-1.466***	-1.533**	-1.542***	-1.762**		
	(-3.6)	(-2.2)	(-3.1)	(-2.6)		
Orthodox	-1.093**	-0.327	-1.256**	0.394		
	(-2.7)	(-0.6)	(-2.2)	(0.8)		
Muslim	-1.658***	-1.650***	-1.732***	-1.363***		
	(-4.7)	(-4.1)	(-4.9)	(-3.8)		
Buddhism	-1.267**	-0.059	-1.380**	0.514		
	(-2.3)	(-0.1)	(-2.4)	(1.1)		
UncertAvoid _H			0.010	-0.005		
			(0.9)	(-0.5)		
$PowerDist_H$			-0.002	-0.019**		
			(-0.2)	(-2.2)		
Individualism _H			0.011	-0.020*		
			(1.0)	(-1.7)		
Individualism _W					-0.753	-0.588
					(-1.5)	(-0.9)
$Hierarchy_W$					-1.182**	-0.993
					(-2.1)	(-1.7)
Control variables	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Country FE	No	No	No	No	Yes	Yes
Observations	8,837	8,837	8,837	8,837	7,680	7,680
R-squared	0.78	0.76	0.79	0.77	0.88	0.85

Table 5: Inherited trust and innovation

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the General Social Survey (GSS) between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. *InheritedTrust* is the trust inherited by U.S. descendants of immigrants, which is estimated according to Algan and Cahuc (2010). Other variables are defined in the legend of Table 3. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriables	(1)	(2)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)
InheritedTrust	3.806***	2.236**
	(2.9)	(2.2)
Ln(GDP)	0.214	0.156
	(1.1)	(0.9)
Trade	0.567	0.665
	(0.9)	(0.9)
FinDev	0.619**	0.801***
	(2.8)	(3.8)
FormalInst	-0.149	0.394
	(-0.8)	(1.5)
Ln(VA)	0.529***	0.568***
	(4.9)	(4.7)
Intensity	2.919***	3.857***
	(3.9)	(3.5)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	7,503	7,503
R-squared	0.74	0.75

Table 6: The instrumental variable approach

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Trust is defined using the WVS. *Homicide* is the intentional homicide counts per thousand population for each country each year. Other variables are defined in the legend of Table 3. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

	(1)	(2)	(3)	
Dependent variables	1st Stage	2nd Stage		
	Trust	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)	
Homicide	-0.039***			
	(-3.5)			
Trust		8.840***	5.235***	
		(5.7)	(4.2)	
Ln(GDP)	0.043	0.160	0.279	
	(1.1)	(0.5)	(1.6)	
Trade	-0.040	0.362	0.194	
	(-1.0)	(1.3)	(0.7)	
FinDev	0.025	0.292*	0.519***	
	(1.4)	(1.9)	(3.2)	
FormalInst	-0.013	-0.363	0.042	
	(-0.3)	(-1.4)	(0.2)	
Ln(VA)	0.000	0.541***	0.566***	
	(0.0)	(5.4)	(5.2)	
Intensity	0.027	1.162	2.044*	
	(0.7)	(1.2)	(1.7)	
Year FE	Yes	Yes	Yes	
Industry FE	Yes	Yes	Yes	
Joint test of excluded	F(1,40) = 12.14	NT/A	NI/A	
instruments	Prob > F = 0.00	N/A	N/A	
Observations	8,311	8,311	8,311	
R-squared	0.33	0.61	0.70	

Table 7: Social trust and innovation – **A within-country analysis based on U.S. public firms** The sample consists of firm-years jointly covered by both Compustat and the USPTO patent and citation database between 1991 and 2008. Ln(1+Patent) is the log of one plus the total number of patents applied for. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted using the method of time-technology class fixed effect. *Trust* is the state level social trust score defined using the GSS. *R&D/Assets* is R&D expenses scaled by the book value of total assets. Ln(PPE/Emp) is the log of net Property, Plant, and Equipment (*PPE*) scaled by the number of employees (*Emp*). *Leverage* is the sum of short-term debt and long-term debt over the book value of total assets. *Cash/Assets* is the cash-to-assets ratio. Ln(Assets) is the log of book value of total assets. *MB* is the ratio of market value of assets over book value of assets. *Return* is buy-and-hold stock returns computed over the fiscal year. *Volatility* is the standard deviation of daily stock returns over the fiscal year. *ROA* is EBITDA/*Assets*. Ln(Age) is the number of years elapsed since a firm enters the CRSP database. *Herfindahl* index is computed based on the three-digit SIC code. Ln(SGDP) is the log of per capita GDP for each state each year. *Entry* and *Exit* are the establishment entry rate and exit rate for each state each year, respectively. *Unemployment* is the state level unemployment rate. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are also corrected for correlation across observations for a given state. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent variables —	(1)	(2)
Dependent variables	Ln(1+Patent)	<i>Ln</i> (1+ <i>Citation</i>)
Trust	0.268**	0.270**
	(2.5)	(2.2)
R&D/Assets	1.433***	1.312***
	(8.9)	(9.0)
Ln(PPE/Emp)	0.039*	0.034
	(1.7)	(1.2)
Leverage	-0.608***	-0.657***
	(-6.3)	(-6.9)
Cash/Assets	0.296***	0.268***
	(4.0)	(2.9)
Ln(Assets)	0.440***	0.427***
	(17.0)	(16.7)
MB	0.065***	0.072***
	(15.3)	(15.6)
Return	0.076***	0.089***
	(5.3)	(5.0)
Volatility	4.195***	4.134***
	(8.8)	(9.2)
ROA	0.063	0.060
	(1.5)	(1.4)
Ln(Age)	0.159***	0.138***
	(7.6)	(6.3)
Herfindahl	0.118	0.310
	(0.5)	(1.3)
Herfindahl ²	0.063	-0.110
	(0.2)	(-0.4)
Ln(SGDP)	0.375**	0.315*
	(2.4)	(1.9)
Entry	0.024**	0.029***
	(2.2)	(2.8)
Exit	-0.024	-0.019
	(-1.4)	(-1.0)
Unemployment	0.040**	0.046**
	(2.2)	(2.1)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	40,497	40,497
R-squared	0.45	0.39

Table 8: How does trust enhance innovation? The collaboration channel

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Trust is defined using the WVS. *Contract enforceability index* is from Djankov et al. (2003). Contract enforceability index is defined as high (low) if it is above (below) the sample median. *Intellectual property protection index* is from Park (2008). Intellectual property protection index is defined as high (low) if it is above (below) the sample median. Other variables are defined in the legend of Table 3. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, ***, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriables	(1)	(2)	(3)	(4)	
Dependent variables	Ln(1+Patent)		Ln(1+Citation)		
Panel A: Partitioning the sample	according to the con	tract enforceability ind	lex		
	High	Low	High	Low	
Trust	-0.278	8.006***	-0.520	6.339***	
	(-0.4)	(4.2)	(-0.2)	(3.9)	
Ln(GDP)	0.981***	0.717**	1.438**	0.565	
	(3.6)	(2.4)	(2.6)	(1.6)	
Trade	0.116	0.880	0.244	0.331	
	(0.3)	(0.6)	(0.5)	(0.2)	
FinDev	0.189	0.746	0.485	0.715	
	(1.0)	(1.3)	(1.7)	(1.5)	
FormalInst	-0.373	-0.431	-0.306	0.276	
	(-0.8)	(-1.4)	(-0.6)	(0.8)	
Ln(VA)	0.628***	0.320***	0.592**	0.373***	
	(4.4)	(3.0)	(2.4)	(3.1)	
Intensity	4.102***	-0.713	4.451***	0.191	
	(3.8)	(-0.3)	(4.0)	(0.1)	
Year FE	Yes	Yes	Yes	Yes	
Industry FE	Yes	Yes	Yes	Yes	
Test of equal coefficients	<i>p</i> -value	e = 0.00	<i>p</i> -value	e = 0.01	
Observations	3,489	3,952	3,489	3,952	
R-squared	0.77	0.57	0.70	0.53	
Panel B: Partitioning the sample	according to the inte	llectual property prote	ction index		
	High	Low	High	Low	
Trust	-0.444	5.913***	-0.475	4.080***	
	(-0.5)	(3.4)	(-0.3)	(4.7)	
Ln(GDP)	1.188***	0.327	1.474***	0.147	
	(4.2)	(1.6)	(3.0)	(0.8)	
Trade	0.167	-0.211	0.258	-0.576	
	(0.5)	(-0.5)	(0.6)	(-1.5)	
FinDev	0.209	0.386	0.499**	0.504*	
	(1.5)	(1.1)	(2.8)	(1.8)	
FormalInst	-0.603*	-0.692***	-0.313	-0.079	
	(-1.8)	(-3.2)	(-0.9)	(-0.6)	
Ln(VA)	0.584^{***}	0.270***	0.549**	0.254***	
	(5.1)	(3.3)	(2.9)	(4.2)	
Intensity	3.877***	2.067	4.613***	2.842**	
	(4.3)	(1.6)	(4.6)	(2.2)	
Year FE	Yes	Yes	Yes	Yes	
Industry FE	Yes	Yes	Yes	Yes	
Test of equal coefficients	<i>p</i> -value	e = 0.00	<i>p</i> -value	e = 0.02	
Observations	4,479	4,358	4,479	4,358	
R-squared	0.78	0.58	0.75	0.51	

Table 9: How does trust enhance innovation? The failure tolerance channel

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Trust is defined using the WVS. *Labor protection* is the sum of the employment laws index, collective relations laws index, and social security laws index from Botero et al. (2004). Labor protection is defined as strong (weak) if it is above (below) the sample median. We classify a country's bankruptcy regime as debtor friendly if reorganization is likely to be used in a bankruptcy proceeding, and creditor friendly if foreclosure or liquidation is likely to be used, based on the debt enforcement information from Djankov et al. (2008). Other variables are defined in the legend of Table 3. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent verichles	(1)	(2)	(3)	(4)
Dependent variables	Ln(1+L)	Patent)	Ln(1+Citation)	
Panel A: Partitioning the sample	e according to labor p	protection		
	Strong	Weak	Strong	Weak
Trust	1.188	6.446***	1.802	5.160***
	(1.0)	(4.6)	(1.5)	(5.5)
Ln(GDP)	0.153	0.616***	0.180	0.557*
	(0.4)	(3.2)	(0.4)	(2.0)
Trade	0.724	0.086	1.047	-0.177
	(0.9)	(0.3)	(0.9)	(-0.6)
FinDev	0.594**	0.505***	0.547**	0.644***
	(2.5)	(3.0)	(2.4)	(3.4)
FormalInst	0.112	-0.601**	0.333	0.079
	(0.6)	(-2.1)	(1.7)	(0.3)
Ln(VA)	0.573***	0.299***	0.584***	0.354***
	(3.8)	(3.4)	(3.1)	(3.8)
Intensity	1.345	1.915	2.105	1.510
2	(1.0)	(1.2)	(1.2)	(1.0)
Year FE	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes
Test of equal coefficients	<i>p</i> -value	e = 0.00	<i>p</i> -value	e = 0.03
Observations	5,102	4,454	5,102	4,454
R-squared	0.69	0.71	0.67	0.72
Panel B: Partitioning according	to bankruptcy regime	?S		
0 0	Debtor-friendly	Creditor-friendly	Debtor-friendly	Creditor-friendly
Trust	0.672	5.700***	1.630	4.349***
	(0.6)	(3.6)	(1.2)	(3.6)
Ln(GDP)	0.638**	0.314	0.487**	0.740***
	(2.5)	(1.3)	(2.3)	(3.0)
Trade	0.531	0.348*	0.498	0.119
	(0.4)	(1.9)	(0.3)	(0.5)
FinDev	0.637**	0.089	0.931***	0.352**
	(2.4)	(0.6)	(3.1)	(2.4)
FormalInst	-0.016	-0.317	0.070	-0.080
	(-0.1)	(-1.2)	(0.2)	(-0.3)
Ln(VA)	0.279	0.484***	0.326	0.462***
	(1.5)	(4.1)	(1.7)	(3.7)
Intensity	0.154	0.360	1.345	1.241
·	(0.1)	(0.3)	(0.7)	(0.9)
Year FE	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes
Test of equal coefficients	<i>p</i> -value	e = 0.01	<i>p</i> -value	e = 0.12
Observations	4,550	5,020	4,550	5,020
R-squared	0.69	0.71	0.72	0.68

Table 10: How does trust enhance innovation? The funding channel

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Trust is defined using the WVS. *Financial disclosure index* is from the *Global Competitiveness Report* 1999-2000. Financial disclosure in a country is defined as transparent (opaque) if it is above (below) the sample median. *Strength of auditing and accounting standards index* is from the *Global Competitiveness Report* 2003-2004. Auditing and accounting standards are defined as strong (weak) if its strength is above (below) the sample median. Other variables are defined in the legend of Table 3. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dopondont voriables	(1)	(2)	(3)	(4)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)		Ln(1+Citation)	
Panel A: Partitioning the sample of	according to financia	ıl disclosure		
	Transparent	Opaque	Transparent	Opaque
Trust	-0.237	8.777***	-0.723	6.545***
	(-0.3)	(4.7)	(-0.4)	(3.9)
Ln(GDP)	1.375***	0.950***	1.616***	0.724*
	(5.4)	(3.1)	(3.5)	(1.9)
Trade	0.004	-0.845	0.170	-1.373
	(0.0)	(-1.1)	(0.4)	(-1.7)
FinDev	0.416**	0.293	0.533***	0.547*
	(2.4)	(1.0)	(2.9)	(2.0)
FormalInst	-0.251	-0.060	-0.323	0.504
	(-0.8)	(-0.1)	(-0.9)	(1.2)
Ln(VA)	0.517***	0.320***	0.528**	0.351***
	(3.6)	(3.2)	(2.7)	(3.6)
Intensity	4.160***	-0.048	5.402***	1.055
2	(3.1)	(-0.0)	(3.6)	(0.5)
Year fixed effects	Yes	Yes	Yes	Yes
Industry fixed effects	Yes	Yes	Yes	Yes
Test of equal coefficients	<i>p</i> -value	= 0.00	<i>p</i> -value	= 0.00
Observations	4.243	4.438	4.243	4.438
R-squared	0.79	0.60	0.74	0.54
Panel B: Partitioning the sample of	according to the stre	ngth of auditing and a	accounting standards	
	Strong	Weak	Strong	Weak
Trust	-0.571	7.818***	-0.523	6.139***
	(-0.7)	(4.2)	(-0.3)	(4.5)
Ln(GDP)	1.246***	0.714***	1.394**	0.670***
	(4.0)	(3.5)	(2.8)	(3.0)
Trade	0.059	0.042	0.172	-0.915*
	(0.2)	(0.1)	(0.4)	(-1.8)
FinDev	0.236	0.289	0.363*	0.561*
	(1.4)	(0.8)	(1.7)	(1.8)
FormalInst	-0.476	-0.258	-0.119	0.325
	(-1.3)	(-0.8)	(-0.2)	(1.1)
Ln(VA)	0.548***	0.338***	0.509**	0.329***
	(4.0)	(3.8)	(2.3)	(3.6)
Intensity	1.628	-0.001	2.056	0.485
	(1.1)	(-0.0)	(1.2)	(0.3)
Year fixed effects	Yes	Yes	Yes	Yes
Industry fixed effects	Yes	Yes	Yes	Yes
Test of equal coefficients	<i>n</i> -value	= 0.00	<i>n</i> -value	= 0.00
Observations	3.779	6,165	3.779	6.165
R-squared	0.75	0.67	0.67	0.70

Table 11: The effect of trust on economic growth and productivity gains – More innovative vs. less innovative industries

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. *VA*, *K*, and *Emp are* value-added (in \$millions), capital stock (in \$millions), and total number of employees in a two-digit ISIC industry for each country each year. $\Delta Ln(VA)$ is the annual growth of industry value added. $\Delta Ln(TFP)$ is the annual growth of industry TFP. An industry is defined as less innovative (more innovative) if its average innovation intensity in the industry is below (above) the sample median, where innovation intensity is the median number of patents held by a U.S. firm in a two-digit ISIC industry each year. Other variables are defined in the legend of Table 3. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

	(1)	(2)	(3)	(4)	(5)	(6)
Dependent variables		$\Delta Ln(VA)$			$\Delta Ln(TFP)$	
	Full sample	Less innovative	More innovative	Full sample	Less innovative	More innovative
Trust	0.097*	0.070	0.127**	0.097**	0.057	0.142***
	(2.0)	(1.3)	(2.7)	(2.2)	(1.2)	(3.4)
Ln(VA)	-0.095***	-0.096***	-0.098***	-0.094***	-0.092***	-0.099***
	(-6.0)	(-6.3)	(-5.4)	(-8.1)	(-8.0)	(-7.6)
Ln(K)	-0.003	-0.003	-0.002	0.000	-0.000	0.001
	(-0.8)	(-0.8)	(-0.6)	(0.1)	(-0.1)	(0.4)
Ln(Emp)	0.096***	0.091***	0.103***	0.098***	0.093***	0.106***
	(6.3)	(6.4)	(5.5)	(8.9)	(8.2)	(8.1)
Ln(GDP)	0.038***	0.043***	0.032**	0.047***	0.050***	0.045***
	(3.1)	(3.3)	(2.5)	(4.5)	(4.4)	(4.1)
Trade	-0.050***	-0.068***	-0.035*	-0.046***	-0.061***	-0.032**
	(-2.8)	(-4.0)	(-1.7)	(-3.1)	(-3.8)	(-2.1)
FinDev	-0.009	-0.003	-0.015	-0.009	-0.006	-0.013
	(-0.9)	(-0.3)	(-1.4)	(-1.1)	(-0.7)	(-1.5)
FormalInst	0.050***	0.043**	0.057***	0.047**	0.046**	0.047***
	(3.0)	(2.2)	(3.4)	(2.6)	(2.2)	(2.9)
Intensity	0.208	2.172***	0.036	0.393**	1.586***	0.266
	(0.8)	(5.8)	(0.1)	(2.2)	(4.6)	(1.3)
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Test of equal coefficients	NA	<i>p</i> -value	e = 0.08	NA	<i>p</i> -value	e = 0.07
Observations	7,487	3,837	3,650	7,487	3,837	3,650
R-squared	0.29	0.31	0.27	0.31	0.31	0.33

Internet Appendix

This Internet Appendix provides supplemental analyses and robustness tests for the main results presented in the paper. To avoid any confusion, we add the prefix "IA" for "Internet Appendix" to the table numbers in this section. Below is a list of the tables followed by a discussion of the results.

Table IA1: Using per capita innovation output measures as dependent variables
Table IA2: Using alternative measures of innovation output
Table IA3: Using an alternative measure of trust
Table IA4: Controlling for various fixed effects
Table IA5: Clustering standard errors by both country and year
Table IA6: Lagging trust by five years
Table IA7: Analysis at the technology-class level
Table IA8: Excluding patents first filed with foreign patent offices

Table IA9: Non-monotonicity in the relation between trust and innovation?

(1) In addition to industry fixed effects, we further account for the effect of industry size (e.g., a larger industry may have a higher aggregate level of innovation output) by replacing Ln(1+Patent) and Ln(1+Citation) with the logarithm of one plus per capita patent counts (Ln(1+Patent/Emp)) and the logarithm of one plus per capita citation counts (Ln(1+Citation/Emp)). Patent/Emp and Citation/Emp are defined as Patent and Citation scaled by the total number of employees in each two-digit ISIC industry. We present the regression results in Table IA1. We continue to find significantly positive coefficients on Trust.

(2) Following the previous literature (e.g., Acharya and Subramanian, 2009; Ernst, Richter, and Riedel, 2013) we use two alternative measures of innovation output as our dependent variables, i.e., the logarithm of one plus the number of innovative firms (Ln(1+NInnoFirm)) and the logarithm of one plus patent family size (Ln(1+PatentFamily)). An innovative firm is defined as a firm with non-zero patents, and patent family size is defined as the number of filings of a particular patent application around the world. We find that our results are robust to these two alternative measures of innovation output (see Table IA2).

(3) We construct a measure of social distrust (*Distrust*), the opposite of social trust, based on the percentage of survey participants in each country who responded affirmatively to the following question in WVS: "*Do you think most people try to take advantage of you*?" We then replace *Trust* with *Distrust* in Eq. (5) and present the regression results in Table IA3. We find that the coefficient estimates of *Distrust* are always negative and significant at the 1% level, suggesting that our results are not sensitive to how we measure trust.

(4) We control for time-invariant industry characteristics in each country by including countryindustry fixed effects, and time-varying industry-specific characteristics, such as worldwide industrial development or industry mergers waves, by including industry-year fixed effects. As *Intensity* is an industry-year variable, it is removed from the regressions when industry-year fixed effects are included. We report the regression results in Table IA4. Specifically, in columns (1) and (2) and columns (3) and (4), we include country-industry fixed effects and industry-year fixed effects, respectively, and in columns (5) and (6), we include both country-industry fixed effects and industry-year fixed effects. We find that our results continue to hold even with these additional fixed-effects controls, suggesting that time-invariant country-industry characteristics or timevarying industry-specific characteristics are unlikely to be responsible for our results.

(5) To further mitigate the concern of any residual correlation between sample observations in both country and year dimensions, we employ a two-way clustering by clustering standard errors at both the country and year level following the suggestion of Petersen (2009). Our results are robust to this two-way clustering (see Table IA5).

(6) To capture the long-term nature of innovation processes (Manso, 2011), we measure trust in year *t*-5 (*Trust_{t-5}*) instead of year *t*-1 in Eq. (5). We then re-estimate the regressions and present the results in Table IA6. The coefficient estimates of *Trust_{t-5}* are always positive and significant at the 1% level, suggesting that our findings are robust to accounting for the possibility of delayed response of innovation output to trust.

(7) Following Hsu, Tian, and Xu (2014), we conduct an analysis at the technology-class level.

Specifically, we aggregate all variables at the two-digit International Patent Classification (IPC) class and re-estimate Eq. (5) with technology-class fixed effects instead of industry fixed effects. We present the regression results in Table IA7. We find that the baseline results do not change qualitatively as the coefficient estimates of *Trust* are positive and significant at the 1% level in all the regressions.

(8) Multinational corporations (MNCs) may choose to setup a R&D center overseas or acquire innovative foreign firms for their innovation. Thus a potential concern is that the level of trust in a firm's home country may not be relevant for all of the firm's innovation output. Although this possibility biases against our findings, we further alleviate the concern by excluding patents that are first filed by domestic firms with foreign patent offices, to the extent that such patents are likely to have originated from R&D centers and subsidiaries located overseas. We re-estimate the regression model and present the results in Table IA8. The coefficients of *Trust* remain positive and significant, suggesting that our findings are not driven by MNCs' overseas R&D and acquisition activities.

(9) To examine whether the relation between trust and innovation is monotonic over the entire distribution of trust, we add the quadratic term of Trust, i.e., $Trust^2$, to Eq. (5) as an additional explanatory variable and re-estimate the regression model. We present the regression results in Table IA9. We find that Trust has a significantly positive coefficient, while $Trust^2$ has a significantly negative coefficient. The magnitude of the coefficients suggests that innovation output improves as trust increases but starts to decline after trust reaches the value of 0.48, a level that is exceeded by only 5 out of 42 countries in our sample. These results provide some evidence suggesting that too much trust may impede innovation, which is consistent with Bidault and Castello's (2010) argument that a certain level of tension is beneficial for creativity as it encourages critical thinking. However, for the overwhelming majority of our sample, the conclusion that we draw from our analysis remains intact, i.e., social trust promotes innovation.

References

- Acharya, V. V., Subramanian, K., 2009. Bankruptcy codes and innovation. Review of Financial Studies 22, 4949 4988.
- Bidault, F., Castello, A., 2010. Why too much trust is death to innovation? MITSloan Management Review 51, 33 38.
- Ernst, C., Richter, K., Riedel, N., 2014. Corporate taxation and the quality of research and development. International Tax and Public Finance 21, 694 719.
- Hsu, P.-H., Tian, X., Xu, Y., 2014. Financial development and innovation: Cross-country evidence. Journal of Financial Economics 112, 116 – 135.
- Manso, G., 2011. Motivating innovation. Journal of Finance 66, 1823 1860.
- Petersen, M. A., 2009. Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies 22, 435 80.

Table IA1: Using per capita innovation output measures as dependent variables

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent/Emp) is the log of one plus the total number of patents in a two-digit ISIC industry over the total number of employees in the industry for each country each year. Ln(1+Citation/Emp) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry over the total number of employees in the industry for each country each year. *Trust* is defined using the WVS. Ln(GDP) is the log of GDP per capita. *Trade* is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriables	(1)	(2)
Dependent variables	<i>Ln</i> (1+ <i>Patent/Emp</i>)	Ln(1+Citation/Emp)
Trust	0.974***	1.138***
	(5.4)	(3.7)
Ln(GDP)	0.226***	0.281***
	(5.8)	(3.6)
Trade	0.074	0.121
	(1.1)	(1.1)
FinDev	0.081	0.182***
	(1.7)	(2.7)
FormalInst	-0.033	-0.000
	(-0.6)	(-0.0)
Ln(VA)	0.016	0.035
	(0.7)	(1.1)
Intensity	0.676	2.003*
	(0.8)	(1.8)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	9,332	9,332
R-squared	0.54	0.50

Table IA2: Using alternative measures of innovation output

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+NInnoFirm) and Ln(1+PatentFamily) are the log of one plus the number of innovative firms and the log of one plus the patent family size in a two-digit ISIC industry for each country each year. *Trust* is defined using the WVS. Ln(GDP) is the log of GDP per capita. *Trade* is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriebles	(1)	(2)
Dependent variables	Ln(1+NInnoFirm)	Ln(1+PatentFamily)
Trust	4.720***	4.485***
	(3.1)	(3.5)
Ln(GDP)	0.629***	0.467***
	(2.9)	(2.8)
Trade	0.102	0.149
	(0.3)	(0.6)
FinDev	0.301*	0.382**
	(1.8)	(2.3)
FormalInst	-0.289	-0.161
	(-1.2)	(-0.8)
Ln(VA)	0.435***	0.440***
	(4.0)	(4.3)
Intensity	0.372	0.715
	(0.5)	(0.5)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	9,944	9,944
R-squared	0.66	0.66

Table IA3: Using an alternative measure of trust

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Distrust is defined as the percentage of survey participants who answer "Yes" to the question "Do you think most people try to take advantage of you?" from the WVS. *Ln(GDP)* is the log of GDP per capita. *Trade* is a country's exports plus imports as a fraction of GDP. FinDev is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. FormalInst is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Intensity is the median number of patents held by a U.S. firm in a two-digit ISIC industry each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The t-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent verichles	(1)	(2)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	<i>Ln</i> (1+ <i>Citation</i>)
Distrust	-3.400***	-2.536***
	(-2.9)	(-3.6)
Ln(GDP)	0.518**	0.440*
	(2.6)	(2.0)
Trade	-0.013	0.029
	(-0.0)	(0.1)
FinDev	0.459**	0.511**
	(2.1)	(2.3)
FormalInst	-0.434	0.145
	(-1.3)	(0.4)
Ln(VA)	0.604***	0.663***
	(6.0)	(6.1)
Intensity	1.357	0.769
	(0.6)	(0.2)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	3,753	3,753
R-squared	0.71	0.68

Table IA4: Controlling for various fixed effects

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Trust is defined using the WVS. Ln(GDP) is the log of GDP per capita. Trade is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriables	(1)	(2)	(3)	(4)	(5)	(6)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)
Trust	2.555***	1.581**	3.443**	2.256**	2.508***	1.560*
	(3.0)	(2.1)	(2.5)	(2.7)	(2.9)	(2.0)
Ln(GDP)	2.091*	2.869**	1.593	2.582**	2.119*	2.874**
	(1.7)	(2.4)	(1.4)	(2.3)	(1.7)	(2.4)
Trade	-0.648**	-0.372	-0.880***	-0.581	-0.632**	-0.357
	(-2.2)	(-1.0)	(-3.3)	(-1.7)	(-2.2)	(-0.9)
FinDev	0.096	0.066	-0.008	-0.020	0.097	0.060
	(1.3)	(0.8)	(-0.1)	(-0.2)	(1.3)	(0.7)
FormalInst	-0.197	-0.186	-0.079	-0.085	-0.202	-0.188
	(-1.1)	(-1.2)	(-0.4)	(-0.5)	(-1.1)	(-1.1)
Ln(VA)	-0.125	0.005	0.113*	0.161***	-0.132	0.008
	(-1.4)	(0.2)	(1.9)	(3.7)	(-1.4)	(0.2)
Intensity	0.627	1.365*	-	-	-	-
	(0.9)	(1.7)	-	-	-	-
Year FE	Yes	Yes	No	No	No	No
Country FE	No	No	Yes	Yes	No	No
Industry-year FE	No	No	Yes	Yes	Yes	Yes
Country-industry FE	Yes	Yes	No	No	Yes	Yes
Observations	9,944	9,944	9,944	9,944	9,944	9,944
R-squared	0.95	0.93	0.86	0.85	0.95	0.93

Table IA5: Clustering standard errors by both country and year

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of GDP per capita. *Trade* is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country and year, respectively. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriables	(1)	(2)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)
Trust	4.203***	3.698***
	(3.2)	(3.9)
Ln(GDP)	0.433***	0.441**
	(2.6)	(2.4)
Trade	0.101	-0.038
	(0.4)	(-0.1)
FinDev	0.396**	0.549***
	(2.3)	(3.0)
FormalInst	-0.168	0.230
	(-0.8)	(1.2)
Ln(VA)	0.433***	0.450***
	(4.1)	(4.2)
Intensity	1.032	1.636
	(0.9)	(1.5)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	9,944	9,944
R-squared	0.65	0.67

Table IA6: Lagging trust by five years

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. $Trust_{t-5}$ is defined using the WVS and lagged for five years from the data year. Ln(GDP) is the log of GDP per capita. Trade is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country, respectively. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriables —	(1)	(2)	
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)	
Trust _{t-5}	4.386***	3.807***	
	(3.6)	(4.3)	
Ln(GDP)	0.318*	0.323	
	(1.8)	(1.6)	
Trade	0.709*	0.402	
	(1.9)	(1.1)	
FinDev	0.431**	0.548***	
	(2.5)	(3.1)	
FormalInst	-0.313	0.180	
	(-1.3)	(0.8)	
Ln(VA)	0.548***	0.589***	
	(5.4)	(5.1)	
Intensity	0.566	0.600	
	(0.4)	(0.3)	
Year FE	Yes	Yes	
Industry FE	Yes	Yes	
Observations	7,649	7,649	
R-squared	0.69	0.69	

Table IA7: Analysis at the technology-class level

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit IPC technology class for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit IPC technology class for each country each year. Ln(GDP) is the log of GDP per capita. *Trade* is the log of a country's imports plus exports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit IPC technology class in each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriables	(1)	(2)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)
Trust	3.867***	3.165***
	(3.0)	(3.9)
Ln(GDP)	0.370**	0.305**
	(2.1)	(2.1)
Trade	0.007	-0.105
	(0.0)	(-0.4)
FinDev	0.004**	0.006***
	(2.4)	(2.8)
FormalInst	-0.149	0.253
	(-0.7)	(1.4)
Ln(VA)	0.514***	0.494***
	(3.9)	(3.4)
Intensity	0.355	0.270
	(1.3)	(0.9)
Year FE	Yes	Yes
Tech class FE	Yes	Yes
Observations	7,794	7,794
R-squared	0.68	0.65

Table IA8: Excluding patents first filed with foreign patent offices

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of GDP per capita. *Trade* is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent veriebles	(1)	(2)
Dependent variables	Ln(1+Patent)	Ln(1+Citation)
Trust	4.143***	2.852***
	(2.9)	(3.2)
Ln(GDP)	0.315	0.147
	(1.2)	(1.0)
Trade	0.247	0.402
	(0.6)	(0.9)
FinDev	-0.182	-0.146
	(-0.8)	(-0.7)
FormalInst	-0.111	0.141
	(-0.4)	(0.7)
Ln(VA)	0.372***	0.353**
	(3.0)	(2.5)
Intensity	-1.389	-2.266
	(-1.1)	(-1.6)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	9,944	9,944
R-squared	0.41	0.32

Table IA9: Non-monotonicity in the relation between trust and innovation?

The sample consists of countries with granted patents jointly covered by the UNIDO Industrial Statistical database, the BVD Orbis database, and the WVS between 1991 and 2008. We only count each innovation once, i.e., an innovation patented in different countries is counted as one patent. Ln(1+Patent) is the log of one plus the total number of patents in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of one plus the total number of patent citations adjusted for time-technology class fixed effects in a two-digit ISIC industry for each country each year. Ln(1+Citation) is the log of GDP per capita. *Trade* is a country's exports plus imports as a fraction of GDP. *FinDev* is the ratio of stock market capitalization plus domestic credit provided by the banking sector over GDP. *FormalInst* is a country's formal institutions measured by the economic freedom index from the Fraser Institute. Ln(VA) is the log of value-added in a two-digit ISIC industry for each country each year. Variables in dollars are computed in real terms at constant national prices in 2005 U.S. dollars. The *t*-statistics in parentheses are calculated from the Huber/White/Sandwich heteroskedastic consistent errors, which are clustered by country. The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Dependent verichles	(1)	(2)
Dependent variables	<i>Ln</i> (1+ <i>Patent</i>)	Ln(1+Citation)
Trust	15.214***	13.649***
	(5.1)	(4.0)
Trust ²	-15.700***	-14.190***
	(-3.8)	(-3.0)
Ln(GDP)	0.511***	0.512***
	(2.9)	(3.0)
Trade	0.249	0.095
	(1.0)	(0.3)
FinDev	0.385**	0.540***
	(2.7)	(3.6)
FormalInst	-0.380**	0.039
	(-2.1)	(0.2)
Ln(VA)	0.446***	0.461***
	(5.3)	(5.3)
Intensity	1.063	1.664
	(0.8)	(1.2)
Year FE	Yes	Yes
Industry FE	Yes	Yes
Observations	9,944	9,944
R-squared	0.69	0.70