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Abstract The new definition of rough set and rough implication operator are investigated by

Stone algebra to improve the shortage of [4] and new rough operators such as rough intersection,
rough union, rough complement are introduced. Furthermore we study the relations of the
proposed operations and their characteristics, and also point out that the proposed rough
implication operator is consistent with that of three-valued Lukasiewicz logic and has many good
properties.
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1. Introduction

Rough set theory, introduced by Zdzisaw Pawlak in the early 1980s!* ? ® is a new
mathematical tool to deal with many problems such as vagueness, uncertainty, incomplete data
and reasoning. Now there are lots of papers about rough logic thanks to its abroad application, but
al the rough implication operators exist some defects for  instance,

mng( ® y )=4BECE (DC-A),-BEDf (Le¢ A=AA=B,B=C,B=D) in

[4] cannot imply B ® A° » A® B. Toimprove those defects we apply Stone algebra to rough

set algebra system and give a new ough implication operator with good properties that is
consistent with that of three-valued L ukasiewicz logic.

2. Rough set theory

Definition2.1 Let U be the universe set and R be an equivalent relation on U. A pair (U, R) is
called an approximation space. If X [ U isan arbitrary set, then two approximations are
formally defined as follows:

X={x|xT U,[x]oT X}, X={x|xT U,[X]CXtf}.

Where [X] gisan equivalent classcontaining x. X is called lower approximation of X, X

is called upper approximation of X. The approximated set X lies between its lower and upper
approximations:

XIi Xi X.



We have
- X1 -XT1 -X

with ZI U and - Z isthecomplementof Z in U.

For eacch X U, a rough set is a par &X,XfA. We denote the empty set f
byéf_,f_ﬁ» & ,f i, the universe set U by ég,Uﬁ»éJ,Uﬁ and the power set of U by

AU).
With every pair of approximations, we can distinguish three distinct regions on U:

POS; (X) = X ; R-positive region of X,
BND(X) =X - X ; R-boundary region of X,

NEG,(X)=U - X : Rnegative region of X.

The positive region of X is the set of al objects which can be certainly classified as elements
of X. The negative region of X is the set of al objects which can not be certainly classified as
elements d X and the boundary region contains all objects which can be classified as elements of
X. Hence, imprecision in rough sets is due to the boundary region. Obvioudly, crisp sets have no

boundary region.

Definition22 Let ABT A(U), theinclusion relation of two rough sets is defined as,

AT Bifandonlyif Al B and Al B;
The equivalent relation of two rough sets is defined as,

A» B ifandonlyif A=B ad A=B.
Definition 23 Let A/BT A(U), the intersection of two rough sets is a rough set in

approximation space and is defined as,
AC B » 8AC B, AC Bf,
The union of two rough setsis arough set in approximation space and is defined as,
AE B » 8AE B, AE B#f,
The complement of A isarough set in approximation space and is defined as,
A » & A- AR,
The pseudocomplement of A is arough set in approximation space and is defined as,
A »& A- A,

where X1 U, - X isthecomplement of XinU .



Theorem 2.1 SupposeA, BT A(U), then

ACB=ACB, ACBi ACB;
AE BE AE B, AE B=AE B.

Proof. Theorem 2.1 follows from [1]~[3] and [7].

Theorem 2.2 Suppose A° is the complement of AinU, A" is the pseudocomplement of A
in U, then

1 AT A @ A1 A”;
(3 AEA " =A" ACA =A";
4) A"°=A" =& A- AR;

* *

(5) A =AY = AT = AT =AC=A";
(6) A™ =A%, M A = A7,
Proof. Theorem 2.2can be proved easily from Definition 2.3,

*c*

Remark. Obvioudy, (4) is the pseudocomplement A*(i.e écﬂ,- Kﬁ) in [4], and the
pseudocomplement defined in this paper is the dua pseudocomplement & A,- Afl in [4]. Also
the pseudocomplement and dual pseudocomplement in [4] cannot imply A° » & A- Al and

B°® A° » A® B, whilethe complement and pseudocomplement in this paper can imply dual

pseudocomplement, and the complement and dua pseudocomplement can imply
pseudocomplement.

Theorem 2.3 Suppose A BT A(U), then,

(ACB)®» A°E B®; (AE B)® » A°C B°;
(ACB)" » A"EB; (AEB) » A"CB’
Proof. Theorem 2.3 is easy to be proved by Definition 2.3.

3. New implication operator

We assume familiarity with the basic concepts of lattice theory, universal algebra, and logic.
For definitions not explained here we refer the reader to [12] for lattice theory and universal
algebra, and to [13] for logic. In this paper we directly use the Stone algebra of rough setsthat has
been proved in [9], and we proposethe new implication operator to improve the resultsin [4].

Let B be a Boolean algebra, F be afilter on B, and

¢B,Ff={é,bf|abl Batba+(-b)i F}.

If B=F, then we usually write Bfor &B, Fand now we define the following operations



onéB, Fr:
éa,bf+éc,df =éa+c,b+df; ¢&a,bf:éc,di=¢éa:c,b:df;
&,bif =& b,- af; &,bil =& a,- an.

A modd of b is apar &WV,Vf where Wisaset,and v: p® A(w) A (w), amapping
-called the valuation functionwith every pT P.

If v(p) =éABF then Al B.

The equality v(p) = EA,BFf means that

P holds at all statesof A, and does not hold at any state outside B .
The following characterization of valuation demonstrates the relationship to three-vaued

Lukasiewicz logic: For each pl P let v, :w® 3={0,5,1 be a mapping. Then
vV:P® A(W) defined by

v(P) =4wi W,v_(w) =1 {wl W,v_(w)?* Ofi isavauation.

Conversaly, if wi A, then v, (w)=1; if wi B- A then v, (W)=} otherwise,
v,(w) =0.

Givenamodel A = &V, Vi, we define its meaning function mng Fml ® A(w)” A (w)
as an extension of the valuation v as follows:

mng(® p) =&éw,wr.

For each" pI P,mng(p) =Vv(P).

If mng(j ) =éA,BFf and mng(y ) =&C,Df then
mng(j Uy)=&éACC,BCDf; mng(j Uy)=éAE C,BE Df
mng(j ¢) = & B,- Afi; mng(j ') =& A - Ail
mng(0) =& ,f f mng(1) =&J,Ur.

Here, -A is the complement of Ain A (W) .

Let ran(mng) ={mng(j ):j T Fml}. We define operations on ran(mng) in the obvious



way. It is easy to prove following equalities from above definition

mng(j Uy)=mng( ):mng(y) mng( Uy)=mng( )+mngf )

mng(j ©) =mng( )*; mng(j ") =mng( ).
We define additional operations on Fml by

j ®y =j Uy U Uy");

j «y=(G@®y)Ufy ®j);

mng(j ®y)=mng( )® mngfy ). ()
Hence, we have the following equality

mng(j ®y )=mng( °)+mngy )+mng{ )>mngly <)
=mng(j ) +mngfy ) +mng( )" xmngly )
=& B,- AF+&C,DF +& A- AF:éD,DF
=4 BECE (DC- A),- AE Df ()
Theorem 3.1 1f j .y T Fml then
(M) A «y ifandonlyif mng( )=mngy ).
(2 A=® p« j ifadonyif A5 .
(3) if hisa homomorphism of Fml and A = &V, Vf then there exists some A such that

mng; =mng; o h.
Proof SeeTheorem5in [4].

4. Propertiesof implication operator

In this section, we define a new implication operator ®  and investigate its properties in
rough logic system.

Let mng(j ) = &A, Afl, mng(y ) = 4B,Bf, mng(b) = &C,Cfiand by the knowledge in
Section 3, we have

(G Uy)e=j°Uy° ( Uy)°=j°Uy*;

G Uy)=j U (Uy)=j U"

c*c _—: o, s ccC —: C. - c*c* Iod
=1 = J

=]



ok . k%
Cc

=j ¢ =) =]

j Zj e
mng(j ©°) =& A- Afi; mng(j ©) = & A- Af;
mng( °)=& A- A, mng(j <) =aA Af.
mng( ®y)=mng( “Uy U{ " Uy )
=& AEBE (BC- A)- AE Bi ()
Theorem4.1Let ABT A(U), then thefollowing two equalities are equivalent:

(1) A® B=4 AE BE(BC- A),- AE Bfi

() A® B=4- AE B)C (- AE B),- AE Bf.
Proof. Theorem 4.1 is easy to be proved from ().

Theorem 42Let A BT A(U), then
1 U®BT »f;
2 f®U»U;

@) f® A»U;

4 U® A»A;
5 A® A»U;

6 A® (B® C)»B® (A® C);

(7 if AT B, then B® CT" A® C;
@® if BT C, then A® BIT A® C;
9 BI A® B;

(100 A® B»U ifandonlyif AT B;

(11) B°® A° » A® B.

(12) A®f = A

Proof. Here we only prove (6),(7),(11) and others can be proved easly by Theorem 4.1,( )
and ().

Proofof 6 Sincej] ® ( ® b)=j Uy ® b)U({ Uy ® b)®)
=jcUF “Ub U Ub®)UG Uy UbUy Ub®)%)
=jcUy cUb U " Ub®)U( Uy Ub® Uy Ub))
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=j Uy *UbUf "Ub®)U( "Uy HU({ "Ub“)U({ " Uy Ub®)
wegety ® ( ® b)=y°U({ ® b)Uly U( ® b)%)
=y UG “UbU( "Ub®))Uy "U( *UbU|  Ub“)%)
=y “Uj “UbU({ "Ub)Uf "UG "Ub® U(§ " Ub))
=y °Uj *UbU({ "Ub®)Uf "Uj HUy " Ub®)Ufl "Uj "Ub*)
=j Uy “UbUf "Ub“)U( "Uy HU( "Ub®)U( " Uy Ub®)
Combining (i) we can obtain A® (B® C)» B® (A® C) and this completes the

proof of (6).
Proof of (7) Sinceby ( ),we have

B® C=4-BEC)C(-BEC)-BECH
A® C=4- AEC)C (- AEC)- AECH

Agansince AT B iff Al B,Al B iff - Bi -A,- B -A,

then - BECI -AEC,- BECI - Al C,-BECI -AEC

Hence B® CT" A® C.
Proof of (11

m

je®y°=j *Uy UG “Uy =)=y Uj Uy Uj )
y ®j =y °Uj Uy Uj %)
Hence, B°® A° » A® B.

Remark Theorem4.2 shows that the new implication operator satisfies the basic properties
((2)~(5)), monotonicity((7),(8)) of implication, and (6) and (9) yield the deductibility and
preserve-order respectively, aso (11) and (12) give the equivalence of inversely negative
proposition and original proposition.

Theorem 4.3 Let AB,CT A(U) then
() A® (BCC)»(A® B)C(A® C);
(2 (AEB)® C»(A® C)C(B® C) ;

(3) A® (BEC)»(A® B)E (A® C);



4 (ACB)® C»(A® C)E(B® C) .

Proof. Here we only prove (2),(4), and others can be proved easly.
Proof of (2

( ®b)Uy ® b)=( *UbU({ "Ub®)Ufy *Ub Uy " Ub®))
=( *Uy ©)UG “Ub)U( Uy "Ub®)U(b Uy ©)Ub U(b Uy " Ub®)U
(G Uy “Ub®)U(bUj Ub®)UG Uy Ub®)
=( “Uy ©)Ub UG " Uy Ub®)
( Uy)®b=( Uy)°UbU( Uy) Ub®)
=( “Uy )Ub UG " Uy Ub®)
Hence, (AEB)® C» (A® C)C(B® C)

Proof of (4
( Uy)®b=( Uy)°UbU(G Uy) Ub®)
=( “Uy ©)Ub U(( "Uy ")Ub®)
=( “Uy ©)Ub U{ "Ub®)Ufy " Ub®)
(G ® b)Uy ® b)=( *UbU( "Ub®))Uf “Ub U(y " Ub®))
=( “Uy ©)Ub UG "Ub®)Uf " Ub®)
Hence, (ACB)® C» (A® C)E (B® C).
Theorem 44Let ABT A(U) then
1) AT (A® B)® B);

(2 (A® B)»E{X|AT X ® B}.

Proof. It is easily proved by (6) and (10) of Theorem 4.2,
Remark Theorem 4.4 and (6) and (9) of Theorem 4.2 support the reasoning process

of A,A® BP B.

5. Conclusion
Rough implication operator is the emphasis and difficulty in the study of rough logic and the

rough implication operation in [4] can not imply B° ® A° » A® B, i.e the inversdy
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negative proposition and original proposition are not equivalent. Due to the shortages of rough
pseudocomplement ~  and dual pseudocomplement = in [4], in this paper with the view of
Stone algebra we begin with rough set operation to redefine the rough intersection, rough union,
rough complement and rough implication operator whose relations and properties have been
investigated. It is shown that the proposed implication operator is consistent with that of
three-valued L ukasiewicz logic and has many good properties.
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