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1. Introduction  

Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s [1、2、3], is a new 
mathematical tool to deal with many problems such as vagueness, uncertainty, incomplete data 
and reasoning. Now there are lots of papers about rough logic thanks to its abroad application, but 
all the rough implication operators exist some defects for instance,  

〉∪−−∩∪∪〈−=→ DBADCBmng ),()( ψϕ  (Let DBCBBAAA ==== ,,, ) in 

[4] cannot imply BAAB cc →≈→ . To improve those defects we apply Stone algebra to rough 

set algebra system and give a new rough implication operator with good properties that is 
consistent with that of three-valued Lukasiewicz logic.  

2. Rough set theory 

Definition2.1 Let U be the universe set and R be an equivalent relation on U. A pair (U, R) is 
called an approximation space. If UX ⊆  is an arbitrary set, then two approximations are 

formally defined as follows: 

}][,|{ XxUxxX R ⊆∈= , }][,|{ φ≠∩∈= XxUxxX R . 

Where Rx][ is an equivalent class containing x . X  is called lower approximation of X, X  

is called upper approximation of X. The approximated set X lies between its lower and upper 
approximations:     

XXX ⊆⊆ .                                   
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We have  

XXX −⊆−⊆−                                        

with UZ ⊆  and Z−  is the complement of Z  in U . 

For each UX ⊆ , a rough set is a pair 〉〈 XX , . We denote the empty set φ  

by 〉〈≈〉〈 φφφφ ,, , the universe set U  by 〉〈≈〉〈 UUUU ,,  and the power set of U  by 

( )Uℜ . 

With every pair of approximations, we can distinguish three distinct regions on U:  

XXPOS R =)( ; R-positive region of X, 

XXXBNDR −=)( ; R-boundary region of X, 

XUXNEGR −=)( : R-negative region of X. 

The positive region of X is the set of all objects which can be certainly classified as elements 
of X. The negative region of X is the set of all objects which can not be certainly classified as 
elements of X and the boundary region contains all objects which can be classified as elements of 
X. Hence, imprecision in rough sets is due to the boundary region. Obviously, crisp sets have no 
boundary region. 

 Definition 2.2  Let )(, UBA ℜ∈ , the inclusion relation of two rough sets is defined as, 

BA ⊂~  if and only if BA ⊆  and BA ⊆ ; 

The equivalent relation of two rough sets is defined as, 

BA ≈  if and only if BA =  and BA = . 

Definition 2.3  Let )(, UBA ℜ∈ , the intersection of two rough sets is a rough set in 

approximation space and is defined as, 

 〉∩∩〈≈∩ BABABA , , 

The union of two rough sets is a rough set in approximation space and is defined as, 

〉∪∪〈≈∪ BABABA , , 

The complement of A is a rough set in approximation space and is defined as, 

〉−〈−≈ AAAc , , 

The pseudocomplement of A is a rough set in approximation space and is defined as, 

〉−〈−≈∗ AAA , ,   

where UX ⊆ , X−  is the complement of X in U . 
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Theorem 2.1 Suppose )(, UBA ℜ∈ , then 

BABA ∩=∩ ,        BABA ∩⊆∩ ; 

BABA ∪⊇∪ ,        BABA ∪=∪ . 

Proof. Theorem 2.1 follows from [1]~[3] and [7]. 

Theorem 2.2 Suppose cA  is the complement of A in U, ∗A  is the pseudocomplement of A 
in U, then 

(1) ∗⊆ AAc ;                  (2) ∗∗∗ ⊆ cAA ; 

(3) ∗∗ =∪ AAAc , cc AAA =∩ ∗ ;  

(4) 〉−〈−== ∗∗∗ AAAA ccc , ; 

(5) ∗∗∗∗∗∗∗∗∗∗ ===== AAAAAA cccccc ; 
(6) cccc AA = ;                (7) ∗∗∗ = ccc AA . 

Proof. Theorem 2.2 can be proved easily from Definition 2.3. 

Remark. Obviously, (4) is the pseudocomplement A*(i.e. 〉−〈− AA, ) in [4], and the 

pseudocomplement defined in this paper is the dual pseudocomplement 〉−〈− AA,  in [4]. Also 

the pseudocomplement and dual pseudocomplement in [4] cannot imply 〉−〈−≈ AAAc ,  and 

BAAB cc →≈→ , while the complement and pseudocomplement in this paper can imply dual 

pseudocomplement, and the complement and dual pseudocomplement can imply 
pseudocomplement.  

Theorem 2.3 Suppose )(, UBA ℜ∈ , then, 

ccc BABA ∪≈∩ )( ;     ccc BABA ∩≈∪ )( ; 

∗∗∗ ∪≈∩ BABA )( ;     ∗∗∗ ∩≈∪ BABA )(  

Proof. Theorem 2.3 is easy to be proved by Definition 2.3. 

3. New implication operator 

We assume familiarity with the basic concepts of lattice theory, universal algebra, and logic. 
For definitions not explained here we refer the reader to [12] for lattice theory and universal 
algebra, and to [13] for logic. In this paper we directly use the Stone algebra of rough sets that has 
been proved in [9], and we propose the new implication operator to improve the results in [4].  

Let B be a Boolean algebra, F be a filter on B, and 

})(,,,|,{, FbabaBbabaFB ∈−+≤∈〉〈=〉〈 . 

If FB = , then we usually write B for 〉〈 FB, and now we define the following operations 
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on 〉〈 FB, : 

〉++〈=〉〈+〉〈 dbcadcba ,,, ;  〉⋅⋅〈=〉〈⋅〉〈 dbcadcba ,,, ;    

〉−〈−=〉〈 abba c ,, ;             〉−〈−=〉〈 ∗ aaba ,, . 

A model of β  is a pair 〉〈 vW , ,where W is a set, and )()(: wwpv ℜ×ℜ→ , a mapping 

-called the valuation function with every Pp ∈ . 

If  〉〈= BApv ,)( , then BA ⊆ . 

The equality 〉〈= BApv ,)(  means that 

P holds at all states of A, and does not hold at any state outside B . 
The following characterization of valuation demonstrates the relationship to three-valued 

Lukasiewicz logic: For each Pp ∈  let }1,,0{3: 2
1=→wv p  be a mapping. Then 

)(: WPv ℜ→  defined by  

〉≠∈=∈〈= }0)(,{},1)(,{)( wvWwwvWwPv pp  is a valuation. 

Conversely, if Aw ∈ , then   1)( =wv p ; if ABw −∈ ,then 2
1)( =wv p ; otherwise, 

0)( =wv p . 

Given a model 〉〈=ℜ vW , , we define its meaning function mng: )()( wwFml ℜ×ℜ→  

as an extension of the valuation v as follows: 

〉〈=→ wwpmng ,)( . 

For each Pp ∈∀ , )()( Pvpmng = . 

If 〉〈= BAmng ,)(ϕ  and 〉〈= DCmng ,)(ψ  then 

〉∩∩〈=∧ DBCAmng ,)( ψϕ ; 〉∪∪〈=∨ DBCAmng ,)( ψϕ  

〉−〈−= ABmng c ,)(ϕ ;          〉−〈−=∗ AAmng ,)(ϕ ； 

〉〈= φφ,)0(mng ；                〉〈= UUmng ,)1( . 

Here, -A is the complement of A in )(Wℜ . 

Let }:)({)( Fmlmngmngran ∈= ϕϕ . We define operations on ran(mng) in the obvious 
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way. It is easy to prove following equalities from above definition  

)()()( ψϕψϕ mngmngmng ⋅=∧ ； )()()( ψϕψϕ mngmngmng +=∨ ； 

cc mngmng )()( ϕϕ = ;            ∗∗ = )()( ϕϕ mngmng .  

We define additional operations on Fml by 

)( ∗∗ ∧∨∨=→ cc ψϕψϕψϕ ; 

)()( ϕψψϕψϕ →∧→=↔ ; 

)()()( ψϕψϕ mngmngmng →=→ .                                         (ⅰ) 

Hence, we have the following equality 

)()()()()( ∗∗ ⋅++=→ cc mngmngmngmngmng ψϕψϕψϕ  

         ∗∗ ⋅++= cc mngmngmngmng )()()()( ψϕψϕ  

         〉〈⋅〉−〈−+〉〈+〉−〈−= DDAADCAB ,,,,       

      〉∪−−∩∪∪〈−= DAADCB ),(                                   (ⅱ) 

Theorem 3.1[4] If Fml∈ψϕ , ,then 

(1) ψϕ ↔=ℜ  if and only if )()( ψϕ mngmng = . 

(2) ϕ↔→=ℜ p  if and only if ϕ=ℜ . 

(3) if h is a homomorphism of  Fml and 〉〈=ℜ vW , ,then there exists some ℜ  such that 

hmngmng oℜℜ = . 

Proof  See Theorem 5 in [4]. 

4. Properties of implication operator 

In this section, we define a new implication operator →，and investigate its properties in 

rough logic system. 

Let 〉〈= AAmng ,)(ϕ , 〉〈= BBmng ,)(ψ , 〉〈= CCmng ,)(β and by the knowledge in 

Section 3, we have 

      ccc ψϕψϕ ∧=∨ )( ;    ccc ψϕψϕ ∨=∧ )( ; 

 ∗∗∗ ∧=∨ ψϕψϕ )( ;    ∗∗∗ ∨=∧ ψϕψϕ )(  

∗∗∗ = ccc ϕϕ ;       cccc ϕϕ = ;         ∗∗∗ = ccc ϕϕ  
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∗∗∗∗∗∗∗∗∗∗ ===== ϕϕϕϕϕϕ cccccc ; 

〉−〈−=∗ AAmng cc ,)(ϕ ; 〉−〈−= AAmng c ,)(ϕ ;  

〉−〈−= AAmng c ,)(ϕ ;   〉〈=∗ AAmng c ,)(ϕ . 

))(()( ∗∗ ∧∨∨=→ ccmngmng ψϕψϕψϕ  

〉∪−−∩∪∪〈−= BAABBA ),(                          (ⅲ) 

Theorem 4.1 Let )(, UBA ℜ∈ , then the following two equalities are equivalent:  

(1) 〉∪−−∩∪∪〈−=→ BAABBABA ),( ； 

(2) 〉∪−∪−∩∪−〈=→ BABABABA ),()( . 

Proof. Theorem 4.1 is easy to be proved from (ⅲ). 

Theorem 4.2 Let )(, UBA ℜ∈ , then 

(1)  φφ ≈→U ;  

(2)  UU ≈→φ ; 

(3)  UA ≈→φ ; 

(4)  AAU ≈→ ; 
(5)  UAA ≈→ ; 

(6)  )()( CABCBA →→≈→→ ;  

(7)  if BA ⊂~ , then CACB →⊂→ ~ ; 
(8)  if CB ⊂~ , then CABA →⊂→ ~ ; 

(9)  BAB →⊂~ ; 
(10) UBA ≈→  if and only if BA ⊂~ ; 

(11) BAAB cc →≈→ . 

(12) cAA =→ φ  

Proof. Here we only prove (6),(7),(11) and others can be proved easily by Theorem 4.1,(ⅰ) 
and (ⅲ). 

Proof of (6）  Since ))(()()( ∗∗ →∧∨→∨=→→ cc βψϕβψϕβψϕ  

)))((())(( ∗∗∗∗∗∗ ∧∨∨∧∨∧∨∨∨= cccccc βψβψϕβψβψϕ  

)))((()( ∗∗∗∗∗∗∗ ∧∨∨∧∨∧∨∨∨= ccccc βψβψϕβψβψϕ  
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)()()()( ∗∗∗∗∗∗∗∗∗ ∧∧∨∧∨∧∨∧∨∨∨= ccccc βψϕβϕψϕβψβψϕ  

we get ))(()()( ∗∗ →∧∨→∨=→→ cc βϕψβϕψβϕψ   

)))((())(( ∗∗∗∗∗∗ ∧∨∨∧∨∧∨∨∨= cccccc βϕβϕψβϕβϕψ  

)))((()( ∗∗∗∗∗∗∗ ∧∨∨∧∨∧∨∨∨= ccccc βϕβϕψβϕβϕψ  

)()()()( ∗∗∗∗∗∗∗∗∗ ∧∧∨∧∨∧∨∧∨∨∨= ccccc βϕψβψϕψβϕβϕψ   

)()()()( ∗∗∗∗∗∗∗∗∗ ∧∧∨∧∨∧∨∧∨∨∨= ccccc βψϕβϕψϕβψβψϕ  

Combining (i) we can obtain )()( CABCBA →→≈→→  and this completes the 

proof of (6). 
Proof of (7)  Since by (ⅲ),we have 

〉∪−∪−∩∪−〈=→ CBCBCBCB ),()(  

〉∪−∪−∩∪−〈=→ CACACACA ),()(  

Again since BA ⊂~  iff BA ⊆ , BA ⊆  iff AB −⊆− , AB −⊆− , 

then CACB ∪−⊆∪− , CACB ⊆−⊆∪− , CACB ∪−⊆∪−  

Hence, CACB →⊂→ ~ . 
Proof of (11） 

 )()( ∗∗∗∗ ∧∨∨=∧∨∨=→ cccccccccc ϕψϕψψϕψϕψϕ  

)( ∗∗ ∧∨∨=→ cc ϕψϕψϕψ  

Hence, BAAB cc →≈→ . 

Remark  Theorem4.2 shows that the new implication operator satisfies the basic properties 
((1)~(5)), monotonicity((7),(8)) of implication, and (6) and (9) yield the deductibility and 
preserve-order respectively, also (11) and (12) give the equivalence of inversely negative 
proposition and original proposition. 

Theorem 4.3 Let )(,, UCBA ℜ∈ ，then 

(1)  )()()( CABACBA →∩→≈∩→ ; 

(2) )()()( CBCACBA →∩→≈→∪  ; 

(3) )()()( CABACBA →∪→≈∪→ ; 
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(4) )()()( CBCACBA →∪→≈→∩  . 

Proof. Here we only prove (2),(4), and others can be proved easily. 
Proof of (2） 

))(())(()()( ∗∗∗∗ ∧∨∨∧∧∨∨=→∧→ cccc βψβψβϕβϕβψβϕ  

)()()(

)()()()()(
∗∗∗∗∗∗∗

∗∗∗∗

∧∧∨∧∧∨∧∧

∨∧∧∨∨∧∨∧∧∨∧∨∧=
cccc

ccccccc

βψϕβϕββψϕ

βψββψββψϕβϕψϕ

)()( ∗∗∗ ∧∧∨∨∧= ccc βψϕβψϕ  

  ))(()()( ∗∗ ∧∨∨∨∨=→∨ cc βψϕβψϕβψϕ  

    )()( ∗∗∗ ∧∧∨∨∧= ccc βψϕβψϕ  

Hence, )()()( CBCACBA →∩→≈→∪  

Proof of (4） 

))(()()( ∗∗ ∧∧∨∨∧=→∧ cc βψϕβψϕβψϕ  

))(()( ∗∗∗ ∧∨∨∨∨= ccc βψϕβψϕ  

)()()( ∗∗∗∗ ∧∨∧∨∨∨= cccc βψβϕβψϕ  

   ))(())(()()( ∗∗∗∗ ∧∨∨∨∧∨∨=→∨→ cccc βψβψβϕβϕβψβϕ  

)()()( ∗∗∗∗ ∧∨∧∨∨∨= cccc βψβϕβψϕ  

Hence, )()()( CBCACBA →∪→≈→∩ . 

Theorem 4.4 Let )(, UBA ℜ∈ ，then 

(1) ))((~ BBAA →→⊂ ; 

(2) }~|{)( BXAXBA →⊂∪≈→ . 

Proof. It is easily proved by (6) and (10) of Theorem 4.2. 
Remark  Theorem 4.4 and (6) and (9) of Theorem 4.2 support the reasoning process 

of '' , BBAA ⇒→ . 

5. Conclusion 

Rough implication operator is the emphasis and difficulty in the study of rough logic and the 

rough implication operation in [4] can not imply BAAB cc →≈→ , i.e. the inversely 
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negative proposition and original proposition are not equivalent. Due to the shortages of rough 
pseudocomplement（*）and dual pseudocomplement（–） in [4], in this paper with the view of 

Stone algebra we begin with rough set operation to redefine the rough intersection, rough union, 
rough complement and rough implication operator whose relations and properties have been 
investigated. It is shown that the proposed implication operator is consistent with that of 
three-valued Lukasiewicz logic and has many good properties.   
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